Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RNA ; 30(1): 52-67, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37879864

RESUMEN

Intron splicing is a key regulatory step in gene expression in eukaryotes. Three sequence elements required for splicing-5' and 3' splice sites and a branchpoint-are especially well-characterized in Saccharomyces cerevisiae, but our understanding of additional intron features that impact splicing in this organism is incomplete, due largely to its small number of introns. To overcome this limitation, we constructed a library in S. cerevisiae of random 50-nt (N50) elements individually inserted into the intron of a reporter gene and quantified canonical splicing and the use of cryptic splice sites by sequencing analysis. More than 70% of approximately 140,000 N50 elements reduced splicing by at least 20%. N50 features, including higher GC content, presence of GU repeats, and stronger predicted secondary structure of its pre-mRNA, correlated with reduced splicing efficiency. A likely basis for the reduced splicing of such a large proportion of variants is the formation of RNA structures that pair N50 bases-such as the GU repeats-with other bases specifically within the reporter pre-mRNA analyzed. However, multiple models were unable to explain more than a small fraction of the variance in splicing efficiency across the library, suggesting that complex nonlinear interactions in RNA structures are not accurately captured by RNA structure prediction methods. Our results imply that the specific context of a pre-mRNA may determine the bases allowable in an intron to prevent secondary structures that reduce splicing. This large data set can serve as a resource for further exploration of splicing mechanisms.


Asunto(s)
Precursores del ARN , Saccharomyces cerevisiae , Intrones/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Precursores del ARN/metabolismo , Secuencia de Bases , Empalme del ARN/genética , Sitios de Empalme de ARN/genética
2.
Plant Physiol ; 178(1): 174-188, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082496

RESUMEN

The coordinated distribution of nitrogen to source leaves and sinks is essential for supporting leaf metabolism while also supplying sufficient nitrogen to seeds for development. This study aimed to understand how regulated amino acid allocation to leaves affects photosynthesis and overall plant nitrogen use efficiency in Arabidopsis (Arabidopsis thaliana) and how soil nitrogen availability influences these processes. Arabidopsis plants with a knockout of AAP2, encoding an amino acid permease involved in xylem-to-phloem transfer of root-derived amino acids, were grown in low-, moderate-, and high-nitrogen environments. We analyzed nitrogen allocation to shoot tissues, photosynthesis, and photosynthetic and plant nitrogen use efficiency in these knockout plants. Our results demonstrate that, independent of nitrogen conditions, aap2 plants allocate more nitrogen to leaves than wild-type plants. Increased leaf nitrogen supply positively affected chlorophyll and Rubisco levels, photosynthetic nitrogen use efficiency, and carbon assimilation and transport to sinks. The aap2 plants outperformed wild-type plants with respect to growth, seed yield and carbon storage pools, and nitrogen use efficiency in both high and deficient nitrogen environments. Overall, this study demonstrates that increasing nitrogen allocation to leaves represents an effective strategy for improving carbon fixation and photosynthetic nitrogen use efficiency. The results indicate that an optimized coordination of nitrogen and carbon partitioning processes is critical for high oilseed production in Arabidopsis, including in plants exposed to limiting nitrogen conditions.


Asunto(s)
Aminoácidos/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Clorofila/metabolismo , Mutagénesis Insercional , Brotes de la Planta/metabolismo , Haz Vascular de Plantas/metabolismo , Plantas Modificadas Genéticamente , Ribulosa-Bifosfato Carboxilasa/metabolismo , Estrés Fisiológico
3.
Plant Physiol ; 175(1): 235-247, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28733388

RESUMEN

Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Biomasa , Nitrógeno/metabolismo , Pisum sativum/metabolismo , Semillas/crecimiento & desarrollo , Fertilizantes , Pisum sativum/crecimiento & desarrollo
4.
J Exp Bot ; 65(18): 5193-204, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25005136

RESUMEN

Plants acquire nitrogen in the form of amino acids from the soil, and transport proteins located in the plasma membrane of root cells are required for this process. It was found that the Arabidopsis lysine-histidine-like transporter LHT6 is expressed in root cells important for amino acid uptake, including the epidermis, root hairs, and cortex. Transport studies with lht6 mutants using high levels of amino acids demonstrated that LHT6 is in fact involved in amino acid uptake. To determine if LHT6 plays a role in nitrogen acquisition at soil amino acid concentrations, growth and uptake studies were performed with low levels of toxic amino acid analogues and radiolabelled amino acids, respectively. In addition, mutants of AAP1, another root amino acid transporter, and lht6/aap1 double mutants were examined. The results showed that LHT6 is involved in uptake of acidic amino acids, glutamine and alanine, and probably phenylalanine. LHT6 seems not to transport basic or other neutral amino acids, or, alternatively, other transporters might compensate for eliminated LHT6 function. Previous studies suggested that AAP1 only takes up amino acids at high concentrations; however, here it is demonstrated that the transporter functions in acquisition of glutamate and neutral amino acids when present at soil concentrations. When comparing the characterized root uptake systems, it appears that transporters both with overlapping substrate specificity and with preference for specific substrates are required to access the soil amino acid pool.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Modelos Biológicos , Raíces de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA