Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 293(36): 14080-14088, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30006350

RESUMEN

Targeting mRNAs via seed region pairing is the canonical mechanism by which microRNAs (miRNAs) regulate cellular functions and disease processes. Emerging evidence suggests miRNAs might also act through other mechanisms. miRNA isomers that contain identical seed region sequences, such as miR-29a and miR-29b, provide naturally occurring, informative models for identifying those miRNA effects that are independent of seed region pairing. miR-29a and miR-29b are both expressed in HeLa cells, and miR-29b has been reported to localize to the nucleus in early mitosis because of unique nucleotide sequences on its 3' end. Here, we sought to better understand the mechanism of miR-29b nuclear localization and its function in cell division. We hypothesized that its nuclear localization may be facilitated by protein-miRNA interactions unique to miR-29b. Specific blockade of miR-29b resulted in striking nuclear irregularities not observed following miR-29a blockade. We also observed that miR-29b, but not miR-29a, is enriched in the nucleus and perinuclear clusters during mitosis. Targeted proteomic analysis of affinity-purified samples identified several proteins interacting with synthetic oligonucleotides mimicking miR-29b, but these proteins did not interact with miR-29a. One of these proteins, ADP/ATP translocase 2 (ANT2), known to be involved in mitotic spindle formation, colocalized with miR-29b in perinuclear clusters independently of Argonaute 2. Of note, ANT2 knockdown resulted in nuclear irregularities similar to those observed following miR-29b blockade and prevented nuclear uptake of endogenous miR-29b. Our findings reveal that miR-29 regulates nuclear morphology during mitosis and that this critical function is unique to the miR-29b isoform.


Asunto(s)
Transporte Activo de Núcleo Celular , MicroARNs/fisiología , Translocador 2 del Nucleótido Adenina/análisis , División Celular , Forma del Núcleo Celular , Células HeLa , Humanos , Isomerismo , MicroARNs/metabolismo , Mitosis , Proteómica
2.
Cell Microbiol ; 9(1): 97-105, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16889625

RESUMEN

Pseudomonas aeruginosa causes life-threatening infections in compromised and cystic fibrosis patients. Pathogenesis stems from a number of virulence factors, including four type III translocated cytotoxins: ExoS, ExoT, ExoY and ExoU. ExoS is a bifunctional toxin: the N terminus (amino acids 96-219) encodes a Rho GTPase Activating Protein (GAP) domain. The C terminus (amino acids 234-453) encodes a 14-3-3-dependent ADP-ribosyltransferase domain which transfers ADP-ribose from NAD onto substrates such as the Ras GTPases and vimentin. Ezrin/radixin/moesin (ERM) proteins have recently been identified as high-affinity substrates for ADP-ribosylation by ExoS. Expression of ExoS in HeLa cells led to a loss of phosphorylation of ERM proteins that was dependent upon the expression of ADP-ribosyltransferase activity. MALDI-MS and site-directed mutagenesis studies determined that ExoS ADP-ribosylated moesin at three C-terminal arginines (Arg553, Arg560 and Arg563), which cluster Thr558, the site of phosphorylation by protein kinase C and Rho kinase. ADP-ribosylated-moesin was a poor target for phosphorylation by protein kinase C and Rho kinase, which showed that ADP-ribosylation directly inhibited ERM phosphorylation. Expression of dominant active-moesin inhibited cell rounding elicited by ExoS, indicating that moesin is a physiological target in cultured cells. This is the first demonstration that a bacterial toxin inhibits the phosphorylation of a mammalian protein through ADP-ribosylation. These data explain how the expression of the ADP-ribosylation of ExoS modifies the actin cytoskeleton and indicate that ExoS possesses redundant enzymatic activities to depolymerize the actin cytoskeleton.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Pseudomonas aeruginosa/enzimología , Actinas/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , Proteínas de Microfilamentos/química , Fosforilación , Proteína Quinasa C , Pseudomonas aeruginosa/patogenicidad , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA