Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 96(5): e0197421, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019721

RESUMEN

The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single-cell RNA sequencing (scRNA-seq) studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We show here that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a dedifferentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1-infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell redifferentiation destabilized latent infection. Guided by these findings, data mining of single-cell RNA-seq data of latently HIV-1-infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. More than 20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g., HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, and CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1-infected cells differs from that of normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a dedifferentiated T cell phenotype. Software-based data integration allowed the identification of drug targets that would redifferentiate viral host cells and, by extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.


Asunto(s)
Linfocitos T CD4-Positivos , Desdiferenciación Celular , Infecciones por VIH , VIH-1 , Latencia del Virus , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Humanos
2.
PLoS Pathog ; 17(1): e1008748, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465149

RESUMEN

The biomolecular mechanisms controlling latent HIV-1 infection, despite their importance for the development of a cure for HIV-1 infection, are only partially understood. For example, ex vivo studies have recently shown that T cell activation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, but the molecular biology of this phenomenon is unclear. We demonstrate that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of T cell receptor (TCR)/CD3 activation-inert latently infected T cells. RNA-level analysis identified extensive transcriptomic differences between uninfected, TCR/CD3 activation-responsive and -inert T cells, but did not reveal a gene expression signature that could functionally explain TCR/CD3 signaling inertness. Network analysis suggested a largely stochastic nature of these gene expression changes (transcriptomic noise), raising the possibility that widespread gene dysregulation could provide a reactivation threshold by impairing overall signal transduction efficacy. Indeed, compounds that are known to induce genetic noise, such as HDAC inhibitors impeded the ability of TCR/CD3 activation to trigger HIV-1 reactivation. Unlike for transcriptomic data, pathway enrichment analysis based on phospho-proteomic data directly identified an altered TCR signaling motif. Network analysis of this data set identified drug targets that would promote TCR/CD3-mediated HIV-1 reactivation in the fraction of otherwise TCR/CD3-reactivation inert latently HIV-1 infected T cells, regardless of whether the latency models were based on T cell lines or primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell responsiveness prior to the use of any activating stimulus will likely have to be an element of future HIV-1 cure therapies.


Asunto(s)
Complejo CD3/metabolismo , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , Proteoma , Receptores de Antígenos de Linfocitos T/metabolismo , Transcriptoma , Latencia del Virus , Complejo CD3/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Regulación Viral de la Expresión Génica , Redes Reguladoras de Genes , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal , Activación Viral , Replicación Viral
3.
Water Res ; 230: 119568, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621278

RESUMEN

BACKGROUND: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water. METHODS: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population. We searched for country regulations and THM routine monitoring data using a questionnaire addressed to referent contacts. Scientific and gray literature was reviewed where contacts were not identified or declined participation. We obtained or estimated annual average THM concentrations, weighted to the population served when possible. RESULTS: Drinking water regulations were ascertained for 116/120 (97%) countries, with 89/116 (77%) including THM regulations. Routine monitoring was implemented in 47/89 (53%) of countries with THM regulations. THM data with a varying population coverage was obtained for 69/120 (58%) countries consisting of ∼5600 million inhabitants (76% of world's population in 2016). Population coverage was ≥90% in 14 countries, mostly in the Global North, 50-89% in 19 countries, 11-49% among 21 countries, and ≤10% in 14 countries including India, China, Russian Federation and Nigeria (40% of world's population). DISCUSSION: An enormous gap exists in THM regulatory status, routine monitoring practice, reporting and data availability among countries, especially between high- vs. low- and middle-income countries (LMICs). More efforts are warranted to regulate and systematically assess chemical quality of drinking water, centralize, harmonize, and openly report data, particularly in LMICs.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Trihalometanos/análisis , Abastecimiento de Agua , Contaminantes Químicos del Agua/análisis , Desinfección
4.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33119547

RESUMEN

SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and nonhospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared with those of healthy and convalescent individuals, with the exception of an increase in B lymphocytes. Our findings show increased frequencies of T cell activation markers (CD69, OX40, HLA-DR, and CD154) in hospitalized patients, with other T cell activation/exhaustion markers (PD-L1 and TIGIT) remaining elevated in hospitalized and nonhospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization followed by an increase in PD1 frequencies in nonhospitalized individuals. Interestingly, many of these changes were found to increase over time in nonhospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation after SARS-CoV-2 infection. Changes in T cell activation/exhaustion in nonhospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation after SARS-CoV-2 infection, highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.


Asunto(s)
Antígenos de Diferenciación/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , Activación de Linfocitos , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos B/patología , COVID-19/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linfocitos T/patología
5.
PLoS One ; 15(6): e0234778, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32569289

RESUMEN

Acute graft-versus-host-disease (GVHD), limits the use of hematopoietic cell transplant (HCT) to treat a variety of malignancies. Any new therapeutic approach must satisfy three requirements: 1) Prevent GVHD, 2) Maintain anti-pathogen immunity, and 3) Maintain anti-tumor immunity. In prior studies we have shown that the selective photosensitizer 2-Se-Cl eliminates highly alloreactive lymphocytes from the graft prior to HCT preventing GVHD and that antiviral immune responses were preserved following incubation with 2-Se-Cl. In this report, we investigated whether 2-Se-Cl treatment preserves antitumor immunity, and then used high dimensional flow cytometry to identify the determinants of successful immune reconstitution. Donor C57BL/6 splenocytes were cocultured for 4 days with irradiated BALB/c splenocytes and then exposed to 2-Se-Cl. Photodepletion (PD)-treated splenocytes were then infused into lethally irradiated BALB/c mice inoculated with A20 leukemia/lymphoma cells. Recipient mice that received PD-treated splenocytes survived > 100 days without evidence of GVHD or leukemia. In contrast, mice that did not receive PD-treated cells at time of HCT died of leukemia progression. Multiparameter flow cytometry of cytokines and surface markers on peripheral blood samples 15 days after HCT demonstrated unique patterns of immune reconstitution. We found that before clinical disease onset GVHD was marked by functionally exhausted T cells, while tumor clearance and long-term survival were associated with an expansion of polyfunctional T cells, monocytes, and DCs early after transplantation. Taken together these results demonstrate that 2-Se-Cl photodepletion is a new treatment that can facilitate HCT by preventing GVHD while preserving antiviral and anti-tumor immunity.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Fármacos Fotosensibilizantes/farmacología , Compuestos de Selenio/farmacología , Animales , Antígeno CTLA-4/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Femenino , Leucemia/inmunología , Leucemia/terapia , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/efectos de la radiación , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
6.
Sci Rep ; 10(1): 8955, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488067

RESUMEN

Multi-drug resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), has become a worldwide, major health care problem. While initially restricted to clinical settings, drug resistant S. aureus is now one of the key causative agents of community-acquired infections. We have previously demonstrated that copper dependent inhibitors (CDIs), a class of antibiotics that are only active in the presence of copper ions, are effective bactericidal agents against MRSA. A second-generation CDI, APT-6K, exerted bactericidal activity at nanomolar concentrations. At sub-bactericidal concentrations, it effectively synergized with ampicillin to reverse drug resistance in multiple MRSA strains. APT-6K had a favorable therapeutic index when tested on eukaryotic cells (TI: > 30) and, unlike some previously reported CDIs, did not affect mitochondrial activity. These results further establish inhibitors that are activated by the binding of transition metal ions as a promising class of antibiotics, and for the first time, describe their ability to reverse existing drug resistance against clinically relevant antibiotics.


Asunto(s)
Cobre/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Ampicilina/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cobre/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/metabolismo
7.
Sci Rep ; 10(1): 15748, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978478

RESUMEN

Tetraspanins are a family of proteins with an array of functions that are well studied in cancer biology, but their importance in immunology is underappreciated. Here we establish the tetraspanin CD151 as a unique marker of T-cell activation and, in extension, an indicator of elevated, systemic T-cell activity. Baseline CD151 expression found on a subset of T-cells was indicative of increased activation of the MAPK pathway. Following TCR/CD3 activation, CD151 expression was upregulated on the overall T-cell population, a quintessential feature of an activation marker. CD151+ T-cell frequencies in the spleen, an organ with increased immune activity, were twice as high as in paired peripheral blood samples. This CD151+ T-cell frequency increase was not paralleled by an increase of CD25 or CD38, demonstrating that CD151 expression is regulated independently of other T-cell activation markers. CD151+ T-cells were also more likely to express preformed granzyme B, suggesting that CD151+ T cells are pro-inflammatory. To this end, HIV-1 patients on antiretroviral therapy who are reported to exhibit chronically elevated levels of immune activity, had significantly higher CD4+CD151+ T-cell frequencies than healthy controls, raising the possibility that proinflammatory CD151+ T cells could contribute to the premature immunological aging phenotype observed in these patients.


Asunto(s)
Complejo CD3/metabolismo , Seropositividad para VIH/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Tetraspanina 24/metabolismo , Regulación hacia Arriba , Adulto , Anciano , Estudios de Casos y Controles , Granzimas/metabolismo , Seronegatividad para VIH , Seropositividad para VIH/metabolismo , Humanos , Activación de Linfocitos , Sistema de Señalización de MAP Quinasas , Persona de Mediana Edad , Bazo/inmunología , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA