Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36402135

RESUMEN

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Asunto(s)
Inmunoglobulina M , Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Ratones , Embarazo/inmunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Pruebas de Neutralización , Infección por el Virus Zika/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/aislamiento & purificación
2.
Cell ; 178(1): 190-201.e11, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204101

RESUMEN

The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer. We measured the placental transfer efficiency of maternal HIV and pathogen-specific IgG in US and Malawian HIV-infected mothers and their HIV-exposed uninfected and infected infants. We examined the role of maternal HIV disease progression, infant factors, placental Fc receptor expression, IgG subclass, and glycan signatures and their association with placental IgG transfer efficiency. Maternal IgG characteristics, such as binding to placentally expressed Fc receptors FcγRIIa and FcγRIIIa, and Fc region glycan profiles were associated with placental IgG transfer efficiency. Our findings suggest that Fc region characteristics modulate the selective placental transfer of IgG, with implications for maternal vaccine design and infant health.


Asunto(s)
Infecciones por VIH/transmisión , VIH/genética , Inmunoglobulina G/sangre , Transmisión Vertical de Enfermedad Infecciosa , Placenta/metabolismo , Complicaciones Infecciosas del Embarazo/virología , Receptores de IgG/metabolismo , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Glicosilación , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Lactante , Recién Nacido , Malaui , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Estados Unidos , Carga Viral/genética
3.
Cell ; 151(2): 253-66, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063120

RESUMEN

Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.


Asunto(s)
Caliciviridae/aislamiento & purificación , Intestinos/virología , Parvoviridae/aislamiento & purificación , Picornaviridae/aislamiento & purificación , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Caliciviridae/clasificación , Caliciviridae/genética , Chlorocebus aethiops , Heces/microbiología , Heces/virología , Intestinos/microbiología , Datos de Secuencia Molecular , Parvoviridae/clasificación , Parvoviridae/genética , Filogenia , Picornaviridae/clasificación , Picornaviridae/genética , Reacción en Cadena de la Polimerasa , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Virus de la Inmunodeficiencia de los Simios/patogenicidad
4.
Immunol Rev ; 309(1): 90-96, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35799475

RESUMEN

The SARS-CoV-2 pandemic has resulted in unprecedented health and economic losses. Children generally present with less severe disease from this virus compared with adults, yet neonates and children with COVID-19 can require hospitalization, and older children can develop severe complications, such as the multisystem inflammatory syndrome, resulting in >1500 deaths in children from COVID-19 since the onset of the pandemic. The introduction of effective SARS-CoV-2 vaccines in school-age children and adult populations combined with the emergence of new, more highly transmissible SARS-CoV-2 variants has resulted in a proportional increase of infections in young children. Here, we discuss (1) the current knowledge on pediatric SARS-CoV-2 infection and pathogenesis in comparison with adults, (2) the data on vaccine immunogenicity and efficacy in children, and (3) the benefits of early life SARS-CoV-2 vaccination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , COVID-19/complicaciones , COVID-19/prevención & control , Vacunas contra la COVID-19 , Niño , Preescolar , Humanos , Recién Nacido , Síndrome de Respuesta Inflamatoria Sistémica , Vacunación
5.
PLoS Pathog ; 19(10): e1011670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37796829

RESUMEN

Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.


Asunto(s)
Gripe Humana , Virosis , Animales , Humanos , Anticuerpos Antivirales , Receptores Fc , Antivirales , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH
6.
PLoS Pathog ; 19(1): e1011107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36662906

RESUMEN

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Citomegalovirus , Humanos , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Citomegalovirus/genética , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Vacunas contra Citomegalovirus/uso terapéutico , Mutación , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
7.
PLoS Pathog ; 19(10): e1011646, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796819

RESUMEN

Congenital cytomegalovirus (cCMV) is the leading infectious cause of neurologic defects in newborns with particularly severe sequelae in the setting of primary CMV infection in the first trimester of pregnancy. The majority of cCMV cases worldwide occur after non-primary infection in CMV-seropositive women; yet the extent to which pre-existing natural CMV-specific immunity protects against CMV reinfection or reactivation during pregnancy remains ill-defined. We previously reported on a novel nonhuman primate model of cCMV in rhesus macaques where 100% placental transmission and 83% fetal loss were seen in CD4+ T lymphocyte-depleted rhesus CMV (RhCMV)-seronegative dams after primary RhCMV infection. To investigate the protective effect of preconception maternal immunity, we performed reinfection studies in CD4+ T lymphocyte-depleted RhCMV-seropositive dams inoculated in late first / early second trimester gestation with RhCMV strains 180.92 (n = 2), or RhCMV UCD52 and FL-RhCMVΔRh13.1/SIVgag, a wild-type-like RhCMV clone with SIVgag inserted as an immunological marker, administered separately (n = 3). An early transient increase in circulating monocytes followed by boosting of the pre-existing RhCMV-specific CD8+ T lymphocyte and antibody response was observed in the reinfected dams but not in control CD4+ T lymphocyte-depleted dams. Emergence of SIV Gag-specific CD8+ T lymphocyte responses in macaques inoculated with the FL-RhCMVΔRh13.1/SIVgag virus confirmed reinfection. Placental transmission was detected in only one of five reinfected dams and there were no adverse fetal sequelae. Viral whole genome, short-read, deep sequencing analysis confirmed transmission of both reinfection RhCMV strains across the placenta with ~30% corresponding to FL-RhCMVΔRh13.1/SIVgag and ~70% to RhCMV UCD52, consistent with the mixed human CMV infections reported in infants with cCMV. Our data showing reduced placental transmission and absence of fetal loss after non-primary as opposed to primary infection in CD4+ T lymphocyte-depleted dams indicates that preconception maternal CMV-specific CD8+ T lymphocyte and/or humoral immunity can protect against cCMV infection.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Recién Nacido , Animales , Femenino , Embarazo , Humanos , Citomegalovirus/genética , Macaca mulatta , Reinfección , Placenta , Inmunidad Innata
8.
PLoS Pathog ; 19(10): e1011378, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871009

RESUMEN

Cytomegalovirus (CMV) is the most common congenital infection and cause of birth defects worldwide. Primary CMV infection during pregnancy leads to a higher frequency of congenital CMV (cCMV) than maternal re-infection, suggesting that maternal immunity confers partial protection. However, poorly understood immune correlates of protection against placental transmission contributes to the current lack of an approved vaccine to prevent cCMV. In this study, we characterized the kinetics of maternal plasma rhesus CMV (RhCMV) viral load (VL) and RhCMV-specific antibody binding and functional responses in a group of 12 immunocompetent dams with acute, primary RhCMV infection. We defined cCMV transmission as RhCMV detection in amniotic fluid (AF) by qPCR. We then leveraged a large group of past and current primary RhCMV infection studies in late-first/early-second trimester RhCMV-seronegative rhesus macaque dams, including immunocompetent (n = 15), CD4+ T cell-depleted with (n = 6) and without (n = 6) RhCMV-specific polyclonal IgG infusion before infection to evaluate differences between RhCMV AF-positive and AF-negative dams. During the first 3 weeks after infection, the magnitude of RhCMV VL in maternal plasma was higher in AF-positive dams in the combined cohort, while RhCMV glycoprotein B (gB)- and pentamer-specific binding IgG responses were lower magnitude compared to AF-negative dams. However, these observed differences were driven by the CD4+ T cell-depleted dams, as there were no differences in plasma VL or antibody responses between immunocompetent AF-positive vs AF-negative dams. Overall, these results suggest that levels of neither maternal plasma viremia nor humoral responses are associated with cCMV following primary maternal infection in healthy individuals. We speculate that other factors related to innate immunity are more important in this context as antibody responses to acute infection likely develop too late to influence vertical transmission. Yet, pre-existing CMV glycoprotein-specific and neutralizing IgG may provide protection against cCMV following primary maternal CMV infection even in high-risk, immunocompromised settings.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Animales , Femenino , Humanos , Embarazo , Citomegalovirus/fisiología , Macaca mulatta , Formación de Anticuerpos , Carga Viral , Placenta , Anticuerpos Antivirales , Glicoproteínas/metabolismo , Transmisión Vertical de Enfermedad Infecciosa , Inmunoglobulina G/metabolismo
9.
J Infect Dis ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324766

RESUMEN

BACKGROUND: MF59-adjuvanted gB subunit (gB/MF59) vaccine demonstrated approximately 50% efficacy against human cytomegalovirus (HCMV) acquisition in multiple clinical trials, suggesting that efforts to improve this vaccine design might yield a vaccine suitable for licensure. METHODS: A messenger RNA (mRNA)-based vaccine candidate encoding HCMV gB and pentameric complex (PC), mRNA-1647, is currently in late-stage efficacy trials. However, its immunogenicity has not been compared to the partially effective gB/MF59 vaccine. We assessed neutralizing and Fc-mediated immunoglobulin G (IgG) effector antibody responses induced by mRNA-1647 in both HCMV-seropositive and -seronegative vaccinees from a first-in-human clinical trial through 1 year following third vaccination using a systems serology approach. Furthermore, we compared peak anti-gB antibody responses in seronegative mRNA-1647 vaccinees to that of seronegative gB/MF59 vaccine recipients. RESULTS: mRNA-1647 vaccination elicited and boosted HCMV-specific IgG responses in seronegative and seropositive vaccinees, respectively, including neutralizing and Fc-mediated effector antibody responses. gB-specific IgG responses were lower than PC-specific IgG responses. gB-specific IgG and antibody-dependent cellular phagocytosis responses were lower than those elicited by gB/MF59. However, mRNA-1647 elicited higher neutralization and antibody-dependent cellular cytotoxicity (ADCC) responses. CONCLUSIONS: Overall, mRNA-1647 vaccination induced polyfunctional and durable HCMV-specific antibody responses, with lower gB-specific IgG responses but higher neutralization and ADCC responses compared to the gB/MF59 vaccine. CLINICAL TRIALS REGISTRATION: NCT03382405 (mRNA-1647) and NCT00133497 (gB/MF59).

10.
J Virol ; 96(11): e0023122, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536018

RESUMEN

Despite the worldwide availability of antiretroviral therapy (ART), approximately 150,000 pediatric HIV infections continue to occur annually. ART can dramatically reduce HIV mother-to-child transmission (MTCT), but inconsistent drug access and adherence, as well as primary maternal HIV infection during pregnancy and lactation are major barriers to eliminating vertical HIV transmission. Thus, immunologic strategies to prevent MTCT, such as an HIV vaccine, will be required to attain an HIV-free generation. A primary goal of HIV vaccine research has been to elicit broadly neutralizing antibodies (bnAbs) given the ability of passive bnAb immunization to protect against sensitive strains, yet we previously observed that HIV-transmitting mothers have more plasma neutralization breadth than nontransmitting mothers. Additionally, we have identified infant transmitted/founder (T/F) viruses that escape maternal bnAb responses. In this study, we examine a cohort of postpartum HIV-transmitting women with neutralization breadth to determine if certain maternal bnAb specificities drive the selection of infant T/F viruses. Using HIV pseudoviruses that are resistant to neutralizing antibodies targeting common bnAb epitopes, we mapped the plasma bnAb specificities of this cohort. Significantly more transmitting women with plasma bnAb activity had a mappable plasma bnAb specificity (six of seven, or 85.7%) compared to that of nontransmitting women with plasma bnAb activity (7 of 21, or 33.3%, P = 0.029 by 2-sided Fisher exact test). Our study suggests that having multispecific broad activity and/or uncommon epitope-specific bnAbs in plasma may be associated with protection against the vertical HIV transmission in the setting of maternal bnAb responses. IMPORTANCE As mother to child transmission (MTCT) of HIV plays a major part in the persistence of the HIV/AIDS epidemic and bnAb-based passive and active vaccines are a primary strategy for HIV prevention, research in this field is of great importance. While previous MTCT research has investigated the neutralizing antibody activity of HIV-infected women, this is, to our knowledge, the largest study identifying differences in bnAb specificity of maternal plasma between transmitting and nontransmitting women. Here, we show that among HIV-infected women with broad and potent neutralization activity, more postpartum-transmitting women had a mappable plasma broadly neutralizing antibody (bnAb) specificity, compared to that of nontransmitting women, suggesting that the nontransmitting women more often have multispecific bnAb responses or bnAb responses that target uncommon epitopes. Such responses may be required for protection against vertical HIV transmission in the setting of maternal bnAb responses.


Asunto(s)
Formación de Anticuerpos , Anticuerpos ampliamente neutralizantes , Infecciones por VIH , Seropositividad para VIH , Transmisión Vertical de Enfermedad Infecciosa , Vacunas contra el SIDA , Epítopos , Femenino , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Embarazo
11.
PLoS Pathog ; 17(4): e1009478, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33798244

RESUMEN

Despite considerable reduction of mother-to-child transmission (MTCT) of HIV through use of maternal and infant antiretroviral therapy (ART), over 150,000 infants continue to become infected with HIV annually, falling far short of the World Health Organization goal of reaching <20,000 annual pediatric HIV cases worldwide by 2020. Prior to the widespread use of ART in the setting of pregnancy, over half of infants born to HIV-infected mothers were protected against HIV acquisition. Yet, the role of maternal immune factors in this protection against vertical transmission is still unclear, hampering the development of synergistic strategies to further reduce MTCT. It has been established that infant transmitted/founder (T/F) viruses are often resistant to maternal plasma, yet it is unknown if the neutralization resistance profile of circulating viruses predicts the maternal risk of transmission to her infant. In this study, we amplified HIV-1 envelope genes (env) by single genome amplification and produced representative Env variants from plasma of 19 non-transmitting mothers from the U.S. Women Infant Transmission Study (WITS), enrolled in the pre-ART era. Maternal HIV Env variants from non-transmitting mothers had similar sensitivity to autologous plasma as observed for non-transmitting variants from transmitting mothers. In contrast, infant variants were on average 30% less sensitive to paired plasma neutralization compared to non-transmitted maternal variants from both transmitting and non-transmitting mothers (p = 0.015). Importantly, a signature sequence analysis revealed that motifs enriched in env sequences from transmitting mothers were associated with broadly neutralizing antibody (bnAb) resistance. Altogether, our findings suggest that circulating maternal virus resistance to bnAb-mediated neutralization, but not autologous plasma neutralization, near the time of delivery, predicts increased MTCT risk. These results caution that enhancement of maternal plasma neutralization through passive or active vaccination during pregnancy may potentially drive the evolution of variants fit for vertical transmission.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Variación Genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , Transmisión Vertical de Enfermedad Infecciosa , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Femenino , Infecciones por VIH/transmisión , VIH-1/inmunología , VIH-1/fisiología , Humanos , Lactante , Madres , Filogenia , Embarazo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
12.
Pediatr Res ; 93(6): 1451-1455, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841882

RESUMEN

IMPACT: The COVID-19 pandemic is not over, and its impact is just beginning to be felt on children. COVID-19 vaccines protect both the pregnant patient and newborns, and breastfeeding provides a key component of passive protective immunity. "Long COVID" has contributed to the current crisis in pediatric mental health, and vaccines confer protection against this long-term complication of COVID-19 disease. Vaccine misinformation is not only impacting compliance with maternal and pediatric COVID-19 immunization efforts, but also other routine childhood vaccinations. As a public health priority, we must improve our response to vaccine misinformation and find novel strategies to improve vaccine compliance.


Asunto(s)
COVID-19 , Recién Nacido , Femenino , Embarazo , Niño , Humanos , Vacunas contra la COVID-19 , Pandemias/prevención & control , Síndrome Post Agudo de COVID-19 , Política Pública , Vacunación
13.
J Infect Dis ; 226(9): 1667-1677, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970817

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV) is the most common infectious complication of organ transplantation and cause of birth defects worldwide. There are limited therapeutic options and no licensed vaccine to prevent HCMV infection or disease. To inform development of HCMV antibody-based interventions, a previous study identified individuals with potent and broad plasma HCMV-neutralizing activity, termed elite neutralizers (ENs), from a cohort of HCMV-seropositive (SP) blood donors. However, the specificities and functions of plasma antibodies associated with EN status remained undefined. METHODS: We sought to determine the plasma antibody specificities, breadth, and Fc-mediated antibody effector functions associated with the most potent HCMV-neutralizing responses in plasma from ENs (n = 25) relative to that from SP donors (n = 19). We measured antibody binding against various HCMV strains and glycoprotein targets and evaluated Fc-mediated effector functions, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). RESULTS: We demonstrate that ENs have elevated immunoglobulin G binding responses against multiple viral glycoproteins, relative to SP donors. Our study also revealed potent HCMV-specific antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis activity of plasma from ENs. CONCLUSIONS: We conclude that antibody responses against multiple glycoprotein specificities may be needed to achieve potent plasma neutralization and that potently HCMV elite-neutralizing plasma antibodies can also mediate polyfunctional responses.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Inmunoglobulina G , Anticuerpos Neutralizantes , Formación de Anticuerpos , Anticuerpos Antivirales , Proteínas del Envoltorio Viral
14.
J Infect Dis ; 225(10): 1731-1740, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34962990

RESUMEN

BACKGROUND: Recent studies have indicated that broadly neutralizing antibodies (bnAbs) in children may develop earlier after human immunodeficiency virus (HIV) infection compared to adults. METHODS: We evaluated plasma from 212 antiretroviral therapy-naive children with HIV (1-3 years old). Neutralization breadth and potency was assessed using a panel of 10 viruses and compared to adults with chronic HIV. The magnitude, epitope specificity, and immunoglobulin (Ig)G subclass distribution of Env-specific antibodies were assessed using a binding antibody multiplex assay. RESULTS: One-year-old children demonstrated neutralization breadth comparable to chronically infected adults, whereas 2- and 3-year-olds exhibited significantly greater neutralization breadth (P = .014). Likewise, binding antibody responses increased with age, with levels in 2- and 3-year-old children comparable to adults. Overall, there was no significant difference in antibody specificities or IgG subclass distribution between the pediatric and adult cohorts. It is interesting to note that the neutralization activity was mapped to a single epitope (CD4 binding site, V2 or V3 glycans) in only 5 of 38 pediatric broadly neutralizing samples, which suggests that most children may develop a polyclonal neutralization response. CONCLUSIONS: These results contribute to a growing body of evidence suggesting that initiating HIV immunization early in life may present advantages for the development of broadly neutralizing antibody responses.


Asunto(s)
Infecciones por VIH , VIH-1 , Adulto , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Niño , Preescolar , Epítopos , Anticuerpos Anti-VIH , Humanos , Inmunoglobulina G , Lactante
15.
Clin Infect Dis ; 74(7): 1131-1140, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-34260701

RESUMEN

BACKGROUND: Placentally transferred maternal immunoglobulin G (IgG) protects against pathogens in early life, yet vertically transmitted infections can interfere with transplacental IgG transfer. Although human cytomegalovirus (HCMV) is the most common placentally-transmitted viral infection worldwide, the impact of congenital HCMV (cCMV) infection on transplacental IgG transfer has been underexplored. METHODS: We evaluated total and antigen-specific maternal and cord blood IgG levels and transplacental IgG transfer efficiency in a US-based cohort of 93 mother-infant pairs including 27 cCMV-infected and 66 cCMV-uninfected pairs, of which 29 infants were born to HCMV-seropositive nontransmitting mothers and 37 to HCMV-seronegative mothers. Controls were matched on sex, race/ethnicity, maternal age, and delivery year. RESULTS: Transplacental IgG transfer efficiency was decreased by 23% (95% confidence interval [CI] 10-36%, P = .0079) in cCMV-infected pairs and 75% of this effect (95% CI 28-174%, P = .0085) was mediated by elevated maternal IgG levels (ie, hypergammaglobulinemia) in HCMV-transmitting women. Despite reduced transfer efficiency, IgG levels were similar in cord blood from infants with and without cCMV infection. CONCLUSIONS: Our results indicate that cCMV infection moderately reduces transplacental IgG transfer efficiency due to maternal hypergammaglobulinemia; however, infants with and without cCMV infection had similar antigen-specific IgG levels, suggesting comparable protection from maternal IgG acquired via transplacental transfer.


Asunto(s)
Infecciones por Citomegalovirus , Complicaciones Infecciosas del Embarazo , Anticuerpos Antivirales , Citomegalovirus , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/congénito , Femenino , Humanos , Hipergammaglobulinemia , Inmunoglobulina G , Lactante , Embarazo
16.
Am J Transplant ; 22 Suppl 4: 1-11, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36239200

RESUMEN

Sensitized patients, those who had prior exposure to foreign human leukocyte antigens, are transplanted at lower rates due to challenges in finding suitable organs. Desensitization strategies have permitted highly sensitized patients to undergo kidney transplantation, albeit with higher rates of rejection. This study assesses targeting plasma cell and interleukin (IL)-6 receptor for desensitization in a sensitized nonhuman primate kidney transplantation model. All animals were sensitized using two sequential skin transplants from maximally major histocompatibility complex-mismatched donors. Carfilzomib (CFZ)/tocilizumab (TCZ) desensitization (N = 6) successfully decreased donor-specific antibody (DSA) titers and prevented the expansion of B cells compared to CFZ monotherapy (N = 3). Dual desensitization further delayed, but did not prevent humoral rebound, as evidenced by a delayed increase in post-kidney transplant DSA titers. Accordingly, CFZ/TCZ desensitization conferred a significant survival advantage over CFZ monotherapy. A trend toward increased T follicular helper cells was also observed in the dual therapy group along the same timeline as an increase in DSA and subsequent graft loss. Cytomegalovirus reactivation also occurred in the CFZ/TCZ group but was prevented with ganciclovir prophylaxis. In accordance with prior studies of CFZ-based dual desensitization strategies, the addition of IL-6 receptor blockade resulted in desensitization with further suppression of posttransplant humoral response compared to CFZ monotherapy.


Asunto(s)
Rechazo de Injerto , Isoanticuerpos , Animales , Humanos , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Desensibilización Inmunológica/métodos , Antígenos HLA , Receptores de Interleucina-6 , Primates
17.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177194

RESUMEN

Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Mutación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunización Pasiva , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
18.
Clin Exp Immunol ; 208(2): 245-254, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35395673

RESUMEN

Cytomegalovirus (CMV) genome is highly variable and heterosubtypic immunity should be considered in vaccine development since it can enhance protection in a cross-reactive manner. Here, we developed a protein array to evaluate heterosubtypic immunity to CMV glycoprotein B (gB) in natural infection and vaccination. DNA sequences of four antigenic domains (AD1, AD2, AD4/5, and AD5) of gB were amplified from six reference and 12 clinical CMV strains, and the most divergent genotypes were determined by phylogenetic analysis. Assigned genotypes were in vitro translated and immobilized on protein array. Then, we tested immune response of variable serum groups (primarily infected patients, reactivated CMV infections and healthy individuals with latent CMV infection, as well gB-vaccinated rabbits) with protein in situ array (PISA). Serum antibodies of all patient cohorts and gB-vaccinated rabbits recognized many genetic variants of ADs on protein array, including but not limited to the subtype of infecting strain. High-grade cross-reactivity was observed. In several patients, we observed none or neglectable immune response to AD1 and AD2, while the same patients showed high antibody response to AD4/5 and AD5. Among the primary infected patients, AD5 was the predominant AD, in antibody response. The most successful CMV vaccine to date contains gB and demonstrates only 50% efficacy. In this study, we showed that heterosubtypic and cross-reactive immunity to CMV gB is extensive. Therefore, the failure of CMV gB vaccines cannot be explained by a highly, strain-specific immunity. Our observations suggest that other CMV antigens should be addressed in vaccine design.


Asunto(s)
Anticuerpos Antivirales , Infecciones por Citomegalovirus , Animales , Citomegalovirus , Humanos , Filogenia , Conejos , Proteínas del Envoltorio Viral/genética
19.
PLoS Pathog ; 16(11): e1009010, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33211756

RESUMEN

Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Rotavirus/inmunología , Vacunas contra Rotavirus/inmunología , Rotavirus/inmunología , Vacunación , Países en Desarrollo , Femenino , Humanos , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Lactante , Leche Humana/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Vacunas Atenuadas/inmunología
20.
PLoS Pathog ; 16(2): e1007968, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059027

RESUMEN

Human cytomegalovirus (HCMV) infection is the leading non-genetic cause of congenital birth defects worldwide. While several studies have addressed the genetic composition of viral populations in newborns diagnosed with HCMV, little is known regarding mother-to-child viral transmission dynamics and how therapeutic interventions may impact within-host viral populations. Here, we investigate how preexisting CMV-specific antibodies shape the maternal viral population and intrauterine virus transmission. Specifically, we characterize the genetic composition of CMV populations in a monkey model of congenital CMV infection to examine the effects of passively-infused hyperimmune globulin (HIG) on viral population genetics in both maternal and fetal compartments. In this study, 11 seronegative, pregnant monkeys were challenged with rhesus CMV (RhCMV), including a group pretreated with a standard potency HIG preparation (n = 3), a group pretreated with a high-neutralizing potency HIG preparation (n = 3), and an untreated control group (n = 5). Targeted amplicon deep sequencing of RhCMV glycoprotein B and L genes revealed that one of the three strains present in the viral inoculum (UCD52) dominated maternal and fetal viral populations. We identified minor haplotypes of this strain and characterized their dynamics. Many of the identified haplotypes were consistently detected at multiple timepoints within sampled maternal tissues, as well as across tissue compartments, indicating haplotype persistence over time and transmission between maternal compartments. However, haplotype numbers and diversity levels were not appreciably different between control, standard-potency, and high-potency pretreatment groups. We found that while the presence of maternal antibodies reduced viral load and congenital infection, it had no apparent impact on intrahost viral genetic diversity at the investigated loci. Interestingly, some minor haplotypes present in fetal and maternal-fetal interface tissues were also identified as minor haplotypes in corresponding maternal tissues, providing evidence for a loose RhCMV mother-to-fetus transmission bottleneck even in the presence of preexisting antibodies.


Asunto(s)
Anticuerpos Antivirales/farmacología , Infecciones por Citomegalovirus , Citomegalovirus/metabolismo , Transmisión Vertical de Enfermedad Infecciosa , Complicaciones Infecciosas del Embarazo , Animales , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Femenino , Macaca mulatta , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA