Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 150: 105648, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772524

RESUMEN

Inhalation is a critical route through which substances can exert adverse effects in humans; therefore, it is important to characterize the potential effects that inhaled substances may have on the human respiratory tract by using fit for purpose, reliable, and human relevant testing tools. In regulatory toxicology testing, rats have primarily been used to assess the effects of inhaled substances as they-being mammals-share similarities in structure and function of the respiratory tract with humans. However, questions about inter-species differences impacting the predictability of human effects have surfaced. Disparities in macroscopic anatomy, microscopic anatomy, or physiology, such as breathing mode (e.g., nose-only versus oronasal breathing), airway structure (e.g., complexity of the nasal turbinates), cell types and location within the respiratory tract, and local metabolism may impact inhalation toxicity testing results. This review shows that these key differences describe uncertainty in the use of rat data to predict human effects and supports an opportunity to harness modern toxicology tools and a detailed understanding of the human respiratory tract to develop testing approaches grounded in human biology. Ultimately, as the regulatory purpose is protecting human health, there is a need for testing approaches based on human biology and mechanisms of toxicity.


Asunto(s)
Sistema Respiratorio , Especificidad de la Especie , Pruebas de Toxicidad , Animales , Humanos , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/anatomía & histología , Ratas , Pruebas de Toxicidad/métodos , Exposición por Inhalación/efectos adversos , Medición de Riesgo
2.
Cutan Ocul Toxicol ; : 1-21, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180341

RESUMEN

Background: Test methods to inform hazard characterization and labeling of pesticides to protect human health are typically conducted using laboratory animals, and for skin irritation/corrosion the rabbit Draize test is currently required by many regulatory agencies. Although the Draize test is generally regarded to provide protective classifications for human health, new approach methodologies (NAMs) have been developed that offer more human relevant models that circumvent the uncertainty associated with species differences that exist between rabbits and humans. Despite wide applicability and use of these test methods across a broad range of chemicals, they have not been widely adopted for testing pesticides and pesticidal formulations. One of the barriers to adoption of these methods in this sector is low concordance with results from the Draize rabbit test, particularly for chemicals within the mild to moderate irritation spectrum.Methods: This review compares and contrasts the extent to which available models used in skin irritation testing mimic the anatomy and physiology of human skin, and how each aligns with the known key events leading to chemically-induced adverse skin irritation and corrosion. Doing so fully characterizes the human relevance of each method.Results: As alternatives to the rabbit Draize test, several protocols using ex vivo, in chemico, and in vitro skin models are available as internationally harmonized test guidelines. These methods rely on a variety of models of human skin, including excised rodent skin, synthetic biochemical models of barrier function, cell culture systems, and reconstructed human tissue models. We find these models exhibit biological and mechanistic relevance aligned with human skin irritation responses. Further, recent retrospective analyses have shown that the reproducibility of the Draize test is less than 50% for mild and moderate responses, with many of the replicate predictions spanning more than one category (e.g., a moderate response reported in one study followed by a non-irritant response reported in another study).Conclusions: Based on this comparative evaluation, we recommend top-down and bottom-up testing strategies that use the most human relevant in vitro test methods for skin irritation and corrosion classification of pesticides and pesticide formulations. To further discriminate among mild and non-irritant formulations, optimization of a cytokine release protocol and subsequent analyses of reference formulation test results is recommended.

3.
Arch Toxicol ; 96(11): 2865-2879, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35987941

RESUMEN

Robust and efficient processes are needed to establish scientific confidence in new approach methodologies (NAMs) if they are to be considered for regulatory applications. NAMs need to be fit for purpose, reliable and, for the assessment of human health effects, provide information relevant to human biology. They must also be independently reviewed and transparently communicated. Ideally, NAM developers should communicate with stakeholders such as regulators and industry to identify the question(s), and specified purpose that the NAM is intended to address, and the context in which it will be used. Assessment of the biological relevance of the NAM should focus on its alignment with human biology, mechanistic understanding, and ability to provide information that leads to health protective decisions, rather than solely comparing NAM-based chemical testing results with those from traditional animal test methods. However, when NAM results are compared to historical animal test results, the variability observed within animal test method results should be used to inform performance benchmarks. Building on previous efforts, this paper proposes a framework comprising five essential elements to establish scientific confidence in NAMs for regulatory use: fitness for purpose, human biological relevance, technical characterization, data integrity and transparency, and independent review. Universal uptake of this framework would facilitate the timely development and use of NAMs by the international community. While this paper focuses on NAMs for assessing human health effects of pesticides and industrial chemicals, many of the suggested elements are expected to apply to other types of chemicals and to ecotoxicological effect assessments.


Asunto(s)
Ecotoxicología , Plaguicidas , Animales , Humanos , Proyectos de Investigación , Medición de Riesgo
4.
Regul Toxicol Pharmacol ; 127: 105070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34718074

RESUMEN

Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.


Asunto(s)
Relación Dosis-Respuesta a Droga , Pruebas de Toxicidad/métodos , Toxicocinética , Animales , Pruebas de Carcinogenicidad/métodos , Pruebas de Carcinogenicidad/normas , Dosis Máxima Tolerada , Medición de Riesgo , Pruebas de Toxicidad/normas
5.
Regul Toxicol Pharmacol ; 107: 104419, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31301330

RESUMEN

In 2016, the United States Environmental Protection Agency's (EPA) Office of Pesticide Programs published guidelines for establishing candidate common mechanism groups (CMGs) for cumulative risk assessment (CRA) weight-of-evidence-based screenings. A candidate CMG is a group of chemicals that may share similar structure, apical endpoints, and/or mechanistic data that suggest the potential for a common mechanism of toxicity among them. Here, a weight-of-evidence approach is presented to establish candidacy of a CMG for a group of nine dinitroaniline pesticides. This approach involves review of available in vivo toxicity information and literature to determine mode of action, along with analyses of in vitro toxicity data and chemical structure. Despite structural similarity among some dinitroanilines and some shared target organs identified through toxicity observed in in vivo studies, there were no consistencies among groups, suggesting lack of a common mechanism when all analyses are considered together. For example, two structurally similar compounds with thyroid/liver in vivo effects were not found active in any Toxicity Forecaster (ToxCast) in vitro assays. The weight-of-evidence is insufficient to support the testable hypothesis that dinitroanilines could form a CMG, and highlights the importance of establishing a consensus among multiple lines of evidence prior to CRA.


Asunto(s)
Compuestos de Anilina/toxicidad , Plaguicidas/toxicidad , Medición de Riesgo/métodos , Compuestos de Anilina/química , Animales , Bioensayo , Simulación por Computador , Humanos , Plaguicidas/química , Relación Estructura-Actividad , Pruebas de Toxicidad
6.
Environ Monit Assess ; 186(8): 4841-55, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24729181

RESUMEN

In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 µg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Urbanización
7.
Environ Sci Technol ; 47(3): 1306-12, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23305514

RESUMEN

Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on relatively uninformative and potentially insensitive toxicological end points. Gene expression analysis may provide needed sensitivity and specificity aiding in the identification of primary toxicants. The current work aims to determine the added benefit of integrating gene expression end points into the TIE process. A cDNA library and a custom microarray were constructed for the marine amphipod Ampelisca abdita. Phase 1 TIEs were conducted using 10% and 40% dilutions of acutely toxic sediment. Gene expression was monitored in survivors and controls. An expression-based classifier was developed and evaluated against control organisms, organisms exposed to low or medium toxicity diluted sediment, and chemically selective manipulations of highly toxic sediment. The expression-based classifier correctly identified organisms exposed to toxic sediment even when little mortality was observed, suggesting enhanced sensitivity of the TIE process. The ability of the expression-based end point to correctly identify toxic sediment was lost concomitantly with acute toxicity when organic contaminants were removed. Taken together, this suggests that gene expression enhances the performance of the TIE process.


Asunto(s)
Anfípodos/genética , Organismos Acuáticos/genética , Determinación de Punto Final , Genoma/genética , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Anfípodos/efectos de los fármacos , Animales , Organismos Acuáticos/efectos de los fármacos , Biomarcadores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Sedimentos Geológicos/química , Rhode Island , Ríos/química
8.
ALTEX ; 40(3): 534-540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36888967

RESUMEN

Progress in developing new tools, assays, and approaches to assess human hazard and health risk provides an opportunity to re-evaluate the necessity of dog studies for the safety evaluation of agrochemicals. A workshop was held where partic­ipants discussed the strengths and limitations of past use of dogs for pesticide evaluations and registrations. Opportunities were identified to support alternative approaches to answer human safety questions without performing the required 90-day dog study. Development of a decision tree for determining when the dog study might not be necessary to inform pesticide safety and risk assessment was proposed. Such a process will require global regulatory authority participation to lead to its acceptance. The identification of unique effects in dogs that are not identified in rodents will need further evaluation and determination of their relevance to humans. The establishment of in vitro and in silico approaches that can provide critical data on relative species sensitivity and human relevance will be an important tool to advance the decision process. Promising novel tools including in vitro comparative metabolism studies, in silico models, and high-throughput assays able to identify metabolites and mechanisms of action leading to development of adverse outcome pathways will need further development. To replace or eliminate the 90-day dog study, a collaborative, multidisciplinary, international effort that transcends organi­zations and regulatory agencies will be needed in order to develop guidance on when the study would not be necessary for human safety and risk assessment.


Asunto(s)
Rutas de Resultados Adversos , Plaguicidas , Animales , Perros , Humanos , Agroquímicos/toxicidad , Plaguicidas/toxicidad , Medición de Riesgo , Simulación por Computador
9.
Front Toxicol ; 4: 964553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119357

RESUMEN

New approach methodologies (NAMs) are increasingly being used for regulatory decision making by agencies worldwide because of their potential to reliably and efficiently produce information that is fit for purpose while reducing animal use. This article summarizes the ability to use NAMs for the assessment of human health effects of industrial chemicals and pesticides within the United States, Canada, and European Union regulatory frameworks. While all regulations include some flexibility to allow for the use of NAMs, the implementation of this flexibility varies across product type and regulatory scheme. This article provides an overview of various agencies' guidelines and strategic plans on the use of NAMs, and specific examples of the successful application of NAMs to meet regulatory requirements. It also summarizes intra- and inter-agency collaborations that strengthen scientific, regulatory, and public confidence in NAMs, thereby fostering their global use as reliable and relevant tools for toxicological evaluations. Ultimately, understanding the current regulatory landscape helps inform the scientific community on the steps needed to further advance timely uptake of approaches that best protect human health and the environment.

10.
ALTEX ; 38(3): 463-476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33712859

RESUMEN

Dermal toxicity is driven by the ability of a substance to penetrate the skin. The "triple pack" approach, which combines in vivo rat, in vitro rat, and in vitro human data, is used to calculate an estimated human dermal absorption factor (DAF). To assess the feasibility of deriving a DAF using only in vitro data, we retrospectively evaluated agrochemical formulations to compare the DAF derived from each individual method to the DAF generated from the triple pack approach. For most of the formulations evaluated, the in vitro rat method generated a similar or higher DAF value than the in vivo method. Absorption through in vitro human skin was similar to or less than that observed in rat skin for all formulations. For most of the formulations, the human in vitro method provided a similar or higher estimate of dermal absorption than the triple pack approach. For human health risk assessment, in vitro assays using human skin would be preferable, as they would be directly relevant to the species of interest and avoid overestimation of dermal absorption using rat models. However, rat in vitro studies would still have utility in the absence of human in vitro data. In vitro rat data provide estimates of dermal absorption that are at least as protective as in vivo rat data and thus could also be considered adequate for use in estab­lishing DAFs. The comparisons presented support potentially using in vitro data alone for DAF derivation for human health risk assessment of pesticides.


Asunto(s)
Plaguicidas , Absorción Cutánea , Animales , Técnicas In Vitro , Ratas , Estudios Retrospectivos , Piel
11.
Mar Environ Res ; 169: 105323, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33862568

RESUMEN

Narragansett Bay is representative of New England, USA urbanized estuaries, with colonization in the early 17th century, and development into industrial and transportation centers in the late 18th and early 20th century. Increasing nationwide population and lack of infrastructure maintenance led to environmental degradation, and then eventual improvement after implementation of contaminant control and sewage treatment starting in the 1970s. Benthic macroinvertebrate community structure was expected to respond to these environmental changes. This study assembled data sets from the 1950s through 2010s to examine whether quantitative aggregate patterns in the benthic community corresponded qualitatively to stressors and management actions in the watershed. In Greenwich Bay and Providence River, patterns of benthic response corresponded to the decline and then improvement in sewage treatment at the Fields Point wastewater treatment plant. In Mount Hope Bay, the benthos corresponded to changes in bay fish populations due to thermal discharge from the Brayton Point power plant. The benthos of the Upper West Passage corresponded to climatic changes that caused regime shifts in the plankton and fish communities. Future work will examine the effects of further environmental improvements in the face of continued climatic changes and population growth.


Asunto(s)
Estuarios , Invertebrados , Animales , Monitoreo del Ambiente , New England , Ríos
12.
Reprod Toxicol ; 100: 155-162, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33278556

RESUMEN

25 years after the first Berlin Workshop on Developmental Toxicity this 10th Berlin Workshop aimed to bring together international experts from authorities, academia and industry to consider scientific, methodologic and regulatory aspects in risk assessment of developmental toxicity and to debate alternative strategies in testing developmental effects in the future. Proposals for improvement of the categorization of developmental effects were discussed as well as the update of the DevTox database as valuable tool for harmonization. The development of adverse outcome pathways relevant to developmental neurotoxicity (DNT) was debated as a fundamental improvement to guide the screening and testing for DNT using alternatives to animal methods. A further focus was the implementation of an in vitro mechanism-based battery, which can support various regulatory applications associated with the assessment of chemicals and mixtures. More interdisciplinary and translation research should be initiated to accelerate the development of new technologies to test developmental toxicity. Technologies in the pipeline are (i) high throughput imaging techniques, (ii) models for DNT screening tests, (iii) use of computer tomography for assessment of thoracolumbar supernumerary ribs in animal models, and (iv) 3D biofabrication of bone development and regeneration tissue models. In addition, increased collaboration with the medical community was suggested to improve the relevance of test results to humans and identify more clinically relevant endpoints. Finally, the participants agreed that this conference facilitated better understanding innovative approaches that can be useful for the identification of developmental health risks due to exposure to chemical substances.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Educación , Enfermedades del Sistema Nervioso/inducido químicamente , Toxicología/métodos , Aniversarios y Eventos Especiales , Berlin , Uso de Internet , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/crecimiento & desarrollo , Medición de Riesgo
13.
Environ Toxicol Chem ; 29(3): 742-50, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20821502

RESUMEN

Contaminated sediments are commonly found in urbanized harbors. At sufficiently high contaminant levels, sediments can cause toxicity to aquatic organisms and impair benthic communities. As a result, remediation is necessary and diagnosing the cause of sediment toxicity becomes imperative. In the present study, six sediments from a highly industrialized area in Patrick Bayou (TX, USA) were subjected to initial toxicity testing with the mysid, Americamysis bahia, and the amphipod, Ampelisca abdita. All sediments were toxic to the amphipods, while sites PB4A, PB6A, and PB9 were the only sites toxic to mysids. Due to its toxicity to both test organisms, site PB6A was chosen for a marine whole sediment phase I toxicity identification evaluation (TIE). Results of the TIE found toxicity to amphipods was primarily due to nonionic organic contaminants (NOCs), rather than cationic metals or ammonia. Causes of mysid toxicity in the TIE were less clear. An assessment of metal bioavailability using equilibrium partitioning (EqP) approaches supported the results of the TIE that cationic metals were not responsible for observed toxicity in PB6A for either organism. Toxic units (TU) calculated on measured concentrations of NOCs in the sediment yielded a total TU of 1.25, indicating these contaminants are contributing to the observed sediment toxicity. Using a combination of these TIE and EqP assessment tools, this investigation was capable of identifying NOCs as the likely class of contaminants causing acute toxicity to amphipods exposed to Patrick Bayou sediment. The cause of mysid toxicity was not definitively determined, but unmeasured NOCs are suspected.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/toxicidad , Anfípodos/efectos de los fármacos , Anfípodos/metabolismo , Animales , Disponibilidad Biológica , Metales/farmacocinética , Compuestos Orgánicos/toxicidad , Texas , Contaminantes Químicos del Agua/análisis
14.
Environ Toxicol Chem ; 28(1): 26-35, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18717615

RESUMEN

Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.


Asunto(s)
Carbono , Carbón Mineral , Sedimentos Geológicos/química , Material Particulado , Compuestos Policíclicos/toxicidad , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Disponibilidad Biológica , Ceniza del Carbón , Metales/toxicidad , Compuestos Policíclicos/farmacocinética , Contaminantes Químicos del Agua/farmacocinética
15.
Environ Toxicol Chem ; 28(4): 749-58, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19006439

RESUMEN

Marine and estuarine sediments accumulate contaminants and act as a sink for a wide range of toxic chemicals. As a result, the sediments themselves can become a source of contamination. At sufficient levels, contaminated sediments can cause benthic impairments and toxicity to marine organisms. Among the wide range of contaminants, nonionic organic contaminants (NOCs) are a primary cause of toxicity in marine sediments. Toxicity identification evaluations (TIEs) are used to characterize and identify chemicals causing toxicity in effluents, interstitial waters, and whole sediments using whole-organism endpoints. Phase I whole-sediment TIE methods for NOCs exist, but the development of phase II TIE methods for NOCs is a current research challenge. In the present study, the use of reverse polyethylene samplers (RePES) for phase II methods is examined. Various RePES designs were evaluated in an experimental design study with NOC chemical solutions. Based on equilibration time and proximity of measured NOC water concentrations in the reconstituted system to theoretical concentrations, a nontriolein design with loading of chemical solutions on the inside of the polyethylene tubing was chosen as most effective. A partitioning study demonstrated NOCs partitioned between the RePES and water as well as between the water and air, as expected using this nontriolein RePES design. Finally, a sediment toxicity study comparing the nontriolein RePES to contaminant-spiked sediments was conducted. The nontriolein RePES design was capable of successfully recreating the toxicity and water concentrations observed with the intact sediments.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Polietileno/toxicidad , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Sedimentos Geológicos/análisis , Polietileno/análisis , Factores de Tiempo , Contaminantes Químicos del Agua/análisis
16.
Environ Toxicol Chem ; 37(7): 1969-1979, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29575127

RESUMEN

One application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.e., ionic, nanocopper [1-100 nm in size]) is not fully understood but will affect the bioavailability and toxicity of the metal. In the present study, multiple lines of evidence, including size fractionation, ion-selective electrode electrochemistry, comparative toxicity, and copper speciation were used to determine the form of copper released from lumber blocks and sawdust. The results of all lines of evidence supported the hypothesis that ionic copper was released from MCA lumber and sawdust, with little evidence that nanocopper was released. For example, copper concentrations in size fractionations of lumber block aqueous leachates including unfiltered, 0.1 µm, and 3 kDa were not significantly different, suggesting that the form of copper released was in the size range operationally defined as dissolved. These results correlated with the ion-selective electrode data which detects only ionic copper. In addition, comparative toxicity testing resulted in a narrow range of median lethal concentrations (221-257 µg/L) for MCA lumber blocks and CuSO4 . We conclude that ionic copper was released from the nanocopper pressure-treated lumber under estuarine and marine conditions. Environ Toxicol Chem 2018;37:1969-1979. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Cobre/análisis , Nanopartículas/análisis , Agua de Mar/química , Madera/química , Disponibilidad Biológica , Electrodos de Iones Selectos , Pruebas de Toxicidad , Contaminantes Químicos del Agua/análisis , Espectroscopía de Absorción de Rayos X
17.
Environ Toxicol Chem ; 37(10): 2677-2681, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30024047

RESUMEN

It is well known that copper (Cu) is toxic to marine organisms. We measured and compared the acute toxicity of several forms of Cu (including nanoCu) amended into a marine sediment with mysids and amphipods. For all the forms of Cu tested, toxicity, measured as the median lethal concentration, ranged from 708 to > 2400 mg Cu/kg (dry sediment) for mysids and 258 to 1070 mg Cu/kg (dry sediment) for amphipods. Environ Toxicol Chem 2018;37:2677-2681. © 2018 SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Cobre/toxicidad , Ecosistema , Sedimentos Geológicos/química , Nanopartículas/toxicidad , Pruebas de Toxicidad Aguda , Anfípodos/efectos de los fármacos , Animales , Crustáceos/efectos de los fármacos
18.
Environ Toxicol Chem ; 26(1): 61-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17269460

RESUMEN

Marine sediments accumulate a variety of contaminants and, in some cases, demonstrate toxicity because of this contamination. Toxicity identification evaluation (TIE) methods provide tools for identifying the toxic chemicals causing sediment toxicity. Currently, whole-sediment TIE methods are not available for anionic metals like arsenic and chromium. In the present paper, we describe two new anion-exchange resins used in the development of whole-sediment TIE methods for arsenic and chromium. Resins were shown to reduce whole-sediment toxicity and overlying water concentrations of the anionic metals. Sediment toxicity, expressed as the median lethal concentration, was reduced by a factor of two to a factor of nearly six between amended sediment treatments containing resin and those without resin. Aqueous concentrations of arsenic and chromium in the toxicity exposures decreased to less than the detection limits or to concentrations much lower than those measured in treatments without resin. Interference studies indicated that the anion-exchange resins had no significant effect on concentrations of the representative pesticide endosulfan and minimal effects on concentrations of ammonia. However, the anion-exchange resins did significantly reduce the concentrations of a selection of cationic metals (Cd, Cu, Ni, Pb, and Zn). These data demonstrate the utility of anion-exchange resins for determining the contribution of arsenic and chromium to whole-sediment toxicity. The present results also indicate the importance of using TIE methods in a formal TIE structure to ensure that results are not misinterpreted. These methods should be useful in the performance of marine whole-sediment TIEs.


Asunto(s)
Arsénico/toxicidad , Cromo/toxicidad , Contaminantes Ambientales/toxicidad , Sedimentos Geológicos/química , Resinas de Intercambio Aniónico , Artefactos
19.
Integr Environ Assess Manag ; 13(4): 675-685, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27567128

RESUMEN

The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associated with removal of the Pawtuxet River dam. Integr Environ Assess Manag 2017;13:675-685. Published 2016. This article is a US Government work and is in the public domain in the USA.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Centrales Eléctricas , Ríos/química , Contaminantes Químicos del Agua/análisis , Rhode Island
20.
Environ Toxicol Chem ; 36(2): 449-462, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27442751

RESUMEN

Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being of Greenwich Bay. This diagnostic procedure is useful for management of waterbodies impacted by multiple stressors. Environ Toxicol Chem 2017;36:449-462. © 2016 SETAC.


Asunto(s)
Bahías/química , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Invertebrados/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Eutrofización , Sedimentos Geológicos/análisis , Rhode Island , Urbanización , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA