Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Water Health ; 16(4): 549-561, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30067238

RESUMEN

While agricultural activities, such as the application of manure on arable land and animal grazing on pastures, provide economic and environmental benefits, they may also pose microbial risks to water sources. The aim of this paper was to study the microbial fate and transport in an agricultural catchment and recipient water source through further development of the hydrological model HYPE. Hydrological modelling was combined with hydrodynamic modelling to simulate the fate and transport of Salmonella spp., verotoxin-producing Escherichia coli O157:H7 (VTEC) and Cryptosporidium parvum in an agricultural catchment of a drinking water source, Lake Vombsjön, in Sweden. This approach was useful to study the influence of different processes on the pathogen fate and transport, and to interpret the relative changes in the simulated concentrations. Sensitivity analysis indicated that the largest uncertainties in the model were associated with the estimation of pathogen loads, parameterisation of the pathogen processes, and simulation of partitioning between surface runoff and infiltration. The proposed modelling approach is valuable for assessing the relative effect of different risk-reducing interventions.


Asunto(s)
Bacterias/clasificación , Simulación por Computador , Heces/microbiología , Modelos Teóricos , Calidad del Agua , Agricultura , Animales , Bovinos , Monitoreo del Ambiente , Humanos , Lagos , Suecia , Microbiología del Agua , Contaminantes del Agua , Contaminación del Agua/prevención & control
2.
Hydrol Process ; 36(12): e14767, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37502606

RESUMEN

Conceptual hydrological models can move towards process-oriented modelling when addressing broader issues than discharge modelling alone. For instance, water quality modelling generally requires understanding of both pathways and travel times which might not be easily identified because observations at the outlet aggregate all processes at the catchment scale. In this study we tested if adding a second kind of observation, specifically sediment data, can help distinguish overland flow from total discharge. We applied a multi-objective calibration on both discharge and suspended sediment concentration simulation performance to the World-Wide Hydrological Predictions for the Environment (HYPE) model for 111 catchments spread over the USA. Results show that in comparison to two calibrations made one after the other, the multi-objective calibration leads to a significant improvement on the simulation performance of suspended sediments without a significant impact on the performance of discharge. New modelling hypotheses for overland flow calculations are proposed and resulted in similar discharge performances as the original one but with fewer parameters, which reduces equifinality and can prevent unwarranted model complexity in data-poor areas.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26999184

RESUMEN

Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006-2008) and validation (2009-2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands.


Asunto(s)
Riego Agrícola/normas , Monitoreo del Ambiente/métodos , Lagos/química , Ríos/química , Contaminantes Químicos del Agua/análisis , Calidad del Agua/normas , China , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis , Estaciones del Año , Suelo/química
4.
Ambio ; 34(7): 544-51, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16435744

RESUMEN

In southern Sweden, wetlands are constructed to remove nitrogen (N) in agricultural catchments. The possible effects of such wetlands on riverine phosphorus (P) were also estimated using input-output data from three well-monitored wetlands. This was done to formulate a simple model for removal of P that is dependent on inflow characteristics. Next, the N- and P-reducing effects of wetlands were modeled on a catchment scale (1900 km2) using the HBV-NP model and various assumptions about the wetland area and location. All three wetlands functioned as sinks for total P (tot-P) and for total suspended solids (TSS) with a removal of 10% to 31% and 28% to 50%, respectively. Mean P-removal rates of 17-49 kg ha(-1) yr(-1) were well simulated with the model. Catchment scale simulations indicated that wetlands were more efficient (in percentage of load) as traps for P than for N and that this may motivate the construction of wetlands for P removal far upstream from the catchment outlet.


Asunto(s)
Ambiente , Modelos Teóricos , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Simulación por Computador , Geografía , Suecia
5.
Ambio ; 34(7): 559-66, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16435746

RESUMEN

Starting from six regional climate change scenarios, nitrogen leaching from arable-soil, water discharge, and nitrogen retention was modeled in the Rönneå catchment. Additionally, biological response was modeled in the eutrophic Lake Ringsjön. The results are compared with similar studies on other catchments. All scenarios gave similar impact on water quality but varied in quantities. However, one scenario resulted in a different transport pattern due to less-pronounced seasonal variations in the hydrology. On average, the study shows that, in a future climate, we might expect: i) increased concentrations of nitrogen in the arable root zone (+50%) and in the river (+13%); ii) increased annual load of nitrogen from land to sea (+22%) due to more pronounced winter high flow; moreover, remote areas in the catchment may start to contribute to the outlet load; iii) radical changes in lake biochemistry with increased concentrations of total phosphorus (+50%), total nitrogen (+20%), and planktonic algae such as cyanobacteria (+80%).


Asunto(s)
Clima , Ecosistema , Eutrofización , Agua Dulce/química , Modelos Teóricos , Simulación por Computador , Geografía , Nitrógeno/análisis , Fósforo/análisis , Suelo/análisis , Suecia , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA