Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 190(10): 5187-95, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23589615

RESUMEN

Inflammation and oxidative stress are thought to play determinant roles in the pathogenesis of amyotrophic lateral sclerosis (ALS). Degenerating motor neurons produce signals that activate microglia to release reactive oxygen species (ROS) and proinflammatory cytokines, resulting in a vicious cycle of neurodegeneration. The ALS-causing mutant protein Cu(+)/Zn(+) superoxide dismutase SOD1-G93A directly enhances the activity of the main ROS-producing enzyme in microglia, NADPH oxidase 2 (NOX2), a well-known player in the pathogenesis of ALS. Considering that extracellular ATP through P2X7 receptor constitutes a neuron-to-microglia alarm signal implicated in ALS pathology, we used primary microglial cells derived from transgenic SOD1-G93A mice and SOD1-G93A mice lacking the P2X7 receptor to investigate the effects of both pharmacological induction and genetic ablation of receptor activity on the NOX2 pathway. We observed that, in SOD1-G93A microglia, the stimulation of P2X7 receptor by 2'-3'-O-(benzoyl-benzoyl) ATP enhanced NOX2 activity in terms of translocation of p67(phox) to the membrane and ROS production; this effect was totally dependent on Rac1. We also found that, following P2X7 receptor stimulation, the phosphorylation of ERK1/2 was augmented in ALS microglia, and there was a mutual dependency between the NOX2 and ERK1/2 pathways. All of these microglia-mediated damaging mechanisms were prevented by knocking out P2X7 receptor and by the use of specific antagonists. These findings suggest a noxious mechanism by which P2X7 receptor leads to enhanced oxidative stress in ALS microglia and identify the P2X7 receptor as a promising target for the development of therapeutic strategies to slow down the progression of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , NADPH Oxidasas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Esclerosis Amiotrófica Lateral/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamación , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , NADPH Oxidasa 2 , Neuropéptidos/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Fosforilación , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Especies Reactivas de Oxígeno , Receptores Purinérgicos P2X7/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Tetrazoles/farmacología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
2.
Hum Mol Genet ; 20(21): 4196-208, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21828072

RESUMEN

Increased oxidative stress and mitochondrial damage are among the mechanisms whereby mutant SOD1 (mutSOD1) associated with familial forms of amyotrophic lateral sclerosis (ALS) induces motoneuronal death. The 66 kDa isoform of the growth factor adapter Shc (p66Shc) is known to be central in the control of mitochondria-dependent oxidative balance. Here we report that expression of mutSOD1s induces the activation of p66Shc in neuronal cells and that the overexpression of inactive p66Shc mutants protects cells from mutSOD1-induced mitochondrial damage. Most importantly, deletion of p66Shc ameliorates mitochondrial function, delays onset, improves motor performance and prolongs survival in transgenic mice modelling ALS. We also show that p66Shc activation by mutSOD1 causes a strong decrease in the activity of the small GTPase Rac1 through a redox-sensitive regulation. Our results provide new insight into the potential mechanisms of mutSOD1-mediated mitochondrial dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Eliminación de Gen , Genes Dominantes/genética , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteínas Mutantes/toxicidad , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas Adaptadoras de la Señalización Shc/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Superóxido Dismutasa/metabolismo
3.
J Cell Sci ; 124(Pt 20): 3450-63, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21984814

RESUMEN

The apoptotic protease activating factor 1 (Apaf1) is the main component of the apoptosome, and a crucial factor in the mitochondria-dependent death pathway. Here we show that Apaf1 plays a role in regulating centrosome maturation. By analyzing Apaf1-depleted cells, we have found that Apaf1 loss induces centrosome defects that impair centrosomal microtubule nucleation and cytoskeleton organization. This, in turn, affects several cellular processes such as mitotic spindle formation, cell migration and mitochondrial network regulation. As a consequence, Apaf1-depleted cells are more fragile and have a lower threshold to stress than wild-type cells. In fact, we found that they exhibit low Bcl-2 and Bcl-X(L) expression and, under apoptotic treatment, rapidly release cytochrome c. We also show that Apaf1 acts by regulating the recruitment of HCA66, with which it interacts, to the centrosome. This function of Apaf1 is carried out during the cell life and is not related to its apoptotic role. Therefore, Apaf1 might also be considered a pro-survival molecule, whose absence impairs cell performance and causes a higher responsiveness to stressful conditions.


Asunto(s)
Factor Apoptótico 1 Activador de Proteasas/metabolismo , Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Mitocondrias/metabolismo , Huso Acromático/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Factor Apoptótico 1 Activador de Proteasas/genética , Muerte Celular/genética , Movimiento Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Centrosoma/ultraestructura , Citoesqueleto/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Transporte de Proteínas/genética
4.
Hum Mol Genet ; 19(22): 4529-42, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20829229

RESUMEN

Vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS) arises from a combination of several mechanisms, including protein misfolding and aggregation, mitochondrial dysfunction and oxidative damage. Protein aggregates are found in motoneurons in models for ALS linked to a mutation in the gene coding for Cu,Zn superoxide dismutase (SOD1) and in ALS patients as well. Aggregation of mutant SOD1 in the cytoplasm and/or into mitochondria has been repeatedly proposed as a main culprit for the degeneration of motoneurons. It is, however, still debated whether SOD1 aggregates represent a cause, a correlate or a consequence of processes leading to cell death. We have exploited the ability of glutaredoxins (Grxs) to reduce mixed disulfides to protein thiols either in the cytoplasm and in the IMS (Grx1) or in the mitochondrial matrix (Grx2) as a tool for restoring a correct redox environment and preventing the aggregation of mutant SOD1. Here we show that the overexpression of Grx1 increases the solubility of mutant SOD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34). Conversely, the overexpression of Grx2 increases the solubility of mutant SOD1 in mitochondria, interferes with mitochondrial fragmentation by modifying the expression pattern of proteins involved in mitochondrial dynamics, preserves mitochondrial function and strongly protects neuronal cells from apoptosis. The toxicity of mutant SOD1, therefore, mostly arises from mitochondrial dysfunction and rescue of mitochondrial damage may represent a promising therapeutic strategy.


Asunto(s)
Glutarredoxinas/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Apoptosis/genética , Muerte Celular/genética , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/ultraestructura , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Neuroblastoma/patología , Neuronas/metabolismo , Oxidación-Reducción , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
5.
Hum Mutat ; 32(2): 168-82, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21120952

RESUMEN

Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders including Parkinson, Alzheimer, and Amyotrophic Lateral Sclerosis (ALS). In addition, aberrant mRNA splicing has been documented in neurodegeneration. To characterize the cellular response to mitochondrial perturbations at the level of gene expression and alternative pre-mRNA splicing we used splicing-sensitive microarrays to profile human neuroblastoma SH-SY5Y cells treated with paraquat, a neurotoxic herbicide that induces the formation of reactive oxygen species and causes mitochondrial damage in animal models, and SH-SY5Y cells stably expressing the mutant G93A-SOD1 protein, one of the genetic causes of ALS. In both models we identified a common set of genes whose expression and alternative splicing are deregulated. Pathway analysis of the deregulated genes revealed enrichment in genes involved in neuritogenesis, axon growth and guidance, and synaptogenesis. Alterations in transcription and pre-mRNA splicing of candidate genes were confirmed experimentally in the cell line models as well as in brain and spinal cord of transgenic mice carrying the G93A-SOD1 mutation. Our findings expand the realm of the pathways implicated in neurodegeneration and suggest that alterations of axonal function may descend directly from mitochondrial damage.


Asunto(s)
Empalme Alternativo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Axones/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Neuritas/metabolismo , Enfermedades Neurodegenerativas/genética , Superóxido Dismutasa-1
6.
Antioxid Redox Signal ; 17(9): 1277-330, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22413952

RESUMEN

Recent years have witnessed a renewed interest in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a late-onset progressive degeneration of motor neurons. The discovery of new genes associated with the familial form of the disease, along with a deeper insight into pathways already described for this disease, has led scientists to reconsider previous postulates. While protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, and excitotoxicity have not been dismissed, they need to be re-examined as contributors to the onset or progression of ALS in the light of the current knowledge that the mutations of proteins involved in RNA processing, apparently unrelated to the previous "old partners," are causative of the same phenotype. Thus, newly envisaged models and tools may offer unforeseen clues on the etiology of this disease and hopefully provide the key to treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología
7.
Antioxid Redox Signal ; 11(7): 1547-58, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19344252

RESUMEN

Increasing evidence indicates that the accumulation and aggregation of mutant Cu,Zn superoxide dismutase (mutSOD1) in spinal cord mitochondria is implicated in the pathogenesis of familial amyotrophic lateral sclerosis (FALS). Although the mechanisms underlying this effect are only partially understood, a deficit in the import mechanism of mutSOD1 and/or in its folding and maturation inside mitochondria is likely involved. To investigate this issue, we overexpressed mitochondria-targeted wild-type and mutSOD1s in neuronal cell lines. Mitochondria-targeted G93A mutSOD1 induces a significant impairment of mitochondrial morphology and metabolism, resulting in caspase-3 activation and cell death. These effects are paralleled by the formation of disulfide-linked, insoluble oligomers of mutSOD1 inside mitochondria. Overexpression of the copper chaperone for SOD1 (CCS) improves the solubility of cytosolic mutSOD1s, but has no effect or even worsens the insolubility of mitochondria-targeted G93A mutSOD1, indicating that CCS may increase the availability of an aggregating form of mutSOD1. Interestingly, prevention of the formation of such aggregates by removal of disulfide-bonded cysteines counteracts the effects produced by mutSOD1 accumulated inside mitochondria. Overall, our results demonstrate for the first time that aggregation of mutSOD1s into mitochondria is important for mutSOD1 to induce damage, although other forms of misfolded SOD1s might be involved.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Biopolímeros/metabolismo , Muerte Celular , Mitocondrias/enzimología , Neuronas Motoras/enzimología , Mutación , Superóxido Dismutasa/metabolismo , Animales , Western Blotting , Línea Celular , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Ratones
8.
J Biol Chem ; 283(2): 866-74, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18006498

RESUMEN

Converging evidence indicates that aberrant aggregation of mutant Cu,Zn-superoxide dismutase (mutSOD1) is strongly implicated in familial amyotrophic lateral sclerosis (FALS). MutSOD1 forms high molecular weight oligomers, which disappear under reducing conditions, both in neural tissues of FALS transgenic mice and in transfected cultured cells, indicating a role for aberrant intermolecular disulfide cross-linking in the oligomerization and aggregation process. To study the contribution of specific cysteines in the mechanism of aggregation, we mutated human SOD1 in each of its four cysteine residues and, using a cell transfection assay, analyzed the solubility and aggregation of those SOD1s. Our results suggest that the formation of mutSOD1 aggregates are the consequence of covalent disulfide cross-linking and non-covalent interactions. In particular, we found that the removal of Cys-111 strongly reduces the ability of a range of different FALS-associated mutSOD1s to form aggregates and impair cell viability in cultured NSC-34 cells. Moreover, the removal of Cys-111 impairs the ability of mutSOD1s to form disulfide cross-linking. Treatments that deplete the cellular pool of GSH exacerbate mutSOD1s insolubility, whereas an overload of intracellular GSH or overexpression of glutaredoxin-1, which specifically catalyzes the reduction of protein-SSG-mixed disulfides, significantly rescues mutSOD1s solubility. These data are consistent with the view that the redox environment influences the oligomerization/aggregation pathway of mutSOD1 and point to Cys-111 as a key mediator of this process.


Asunto(s)
Cisteína , Enfermedad de la Neurona Motora/genética , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genética , Sustitución de Aminoácidos , Animales , Encéfalo/enzimología , Cartilla de ADN , ADN Complementario/genética , Humanos , Ratones , Enfermedad de la Neurona Motora/enzimología , Mutación , Fenotipo , Plásmidos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA