Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 67(4): 673-684.e8, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28689662

RESUMEN

The unfolded protein response (UPR) is a conserved homeostatic program that is activated by misfolded proteins in the lumen of the endoplasmic reticulum (ER). Recently, it became evident that aberrant lipid compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent in activating the UPR. The underlying molecular mechanism, however, remained unclear. We show that the most conserved transducer of ER stress, Ire1, uses an amphipathic helix (AH) to sense membrane aberrancies and control UPR activity. In vivo and in vitro experiments, together with molecular dynamics (MD) simulations, identify the physicochemical properties of the membrane environment that control Ire1 oligomerization. This work establishes the molecular mechanism of UPR activation by lipid bilayer stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Simulación de Dinámica Molecular , Mutación , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Relación Estructura-Actividad , Factores de Tiempo
2.
Bioessays ; 40(5): e1700250, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29574931

RESUMEN

The biological membranes of eukaryotic cells harbor sensitive surveillance systems to establish, sense, and maintain characteristic physicochemical properties that ultimately define organelle identity. They are fundamentally important for membrane homeostasis and play active roles in cellular signaling, protein sorting, and the formation of vesicular carriers. Here, we compare the molecular mechanisms of Mga2 and Ire1, two sensors involved in the regulation of fatty acid desaturation and the response to unfolded proteins and lipid bilayer stress in order to identify their commonalities and specializations. We will speculate on the cellular significance of membrane property sensors in other organelles and discuss their putative mechanisms. Based on these findings, we propose membrane property sensors as an emerging class of proteins with wide implications for organelle communication and function.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/genética
3.
J Cell Sci ; 130(19): 3222-3233, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794014

RESUMEN

The unfolded protein response (UPR) allows cells to adjust secretory pathway capacity according to need. Ire1, the endoplasmic reticulum (ER) stress sensor and central activator of the UPR is conserved from the budding yeast Saccharomyces cerevisiae to humans. Under ER stress conditions, Ire1 clusters into foci that enable optimal UPR activation. To discover factors that affect Ire1 clustering, we performed a high-content screen using a whole-genome yeast mutant library expressing Ire1-mCherry. We imaged the strains following UPR induction and found 154 strains that displayed alterations in Ire1 clustering. The hits were enriched for iron and heme effectors and binding proteins. By performing pharmacological depletion and repletion, we confirmed that iron (Fe3+) affects UPR activation in both yeast and human cells. We suggest that Ire1 clustering propensity depends on membrane composition, which is governed by heme-dependent biosynthesis of sterols. Our findings highlight the diverse cellular functions that feed into the UPR and emphasize the cross-talk between organelles required to concertedly maintain homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Hierro/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología , Glicoproteínas de Membrana/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA