Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 25(12): 1573-82, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26028436

RESUMEN

Tropomyosins are coiled-coil proteins that bind actin filaments and regulate multiple cytoskeletal functions, including actin network dynamics near the leading edge of motile cells. Previous work demonstrated that tropomyosins inhibit actin nucleation by the Arp2/3 complex and prevent filament disassembly by cofilin. We find that the Arp2/3 complex and cofilin, in turn, regulate the binding of tropomyosin to actin filaments. Using fluorescence microscopy, we show that tropomyosin (non-muscle Drosophila Tm1A) polymerizes along actin filaments, starting from "nuclei" that appear preferentially on ADP-bound regions of the filament, near the pointed end. Tropomyosin fails to bind dendritic actin networks created in vitro by the Arp2/3 complex, in part because the Arp2/3 complex blocks pointed ends. Cofilin promotes phosphate dissociation and severs filaments, generating new pointed ends and rendering Arp2/3-generated networks competent to bind tropomyosin. Tropomyosin's attraction to pointed ends reflects a strong preference for conformations localized to that region of the filament and reveals a basic molecular mechanism by which lamellipodial actin networks are insulated from the effects of tropomyosin.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Tropomiosina/metabolismo , Animales , Unión Proteica
2.
Methods Enzymol ; 540: 19-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24630099

RESUMEN

The sequence, structure, and assembly dynamics of eukaryotic actins are conserved across phyla. In contrast, actin-like proteins (ALPs) from eubacteria share little sequence homology, form polymers with different architectures, and assemble with different kinetics. The structural and functional diversity of the bacterial ALPs appears to arise from their (i) high degree of functional specialization and (ii) small number of regulatory factors. To understand the molecular mechanism by which a given ALP carries out its biological function, we must, therefore, understand its unique architecture and assembly dynamics. In this chapter, we provide a basic toolbox for studying the self-assembly of uncharacterized ALPs, including methods for characterizing the architecture and stability of polymers, specifying the mechanism of their nucleation, and measuring their rate of growth. Determining these basic properties provides a stable base for more complex reconstitutions of biological function.


Asunto(s)
Actinas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Actinas/química , Actinas/aislamiento & purificación , Actinas/ultraestructura , Bacterias/química , Bacterias/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Transferencia Resonante de Energía de Fluorescencia/métodos , Luz , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA