Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817092

RESUMEN

Cell growth and division are coordinated, ensuring homeostasis under any given growth condition, with division occurring as cell mass doubles. The signals and controlling circuit(s) between growth and division are not well understood; however, it is known in Escherichia coli that the essential GTPase Era, which is growth rate regulated, coordinates the two functions and may be a checkpoint regulator of both. We have isolated a mutant of Era that separates its effect on growth and division. When overproduced, the mutant protein Era647 is dominant to wild-type Era and blocks division, causing cells to filament. Multicopy suppressors that prevent the filamentation phenotype of Era647 either increase the expression of FtsZ or decrease the expression of the Era647 protein. Excess Era647 induces complete delocalization of Z rings, providing an explanation for why Era647 induces filamentation, but this effect is probably not due to direct interaction between Era647 and FtsZ. The hypermorphic ftsZ* allele at the native locus can suppress the effects of Era647 overproduction, indicating that extra FtsZ is not required for the suppression, but another hypermorphic allele that accelerates cell division through periplasmic signaling, ftsL*, cannot. Together, these results suggest that Era647 blocks cell division by destabilizing the Z ring.IMPORTANCE All cells need to coordinate their growth and division, and small GTPases that are conserved throughout life play a key role in this regulation. One of these, Era, provides an essential function in the assembly of the 30S ribosomal subunit in Escherichia coli, but its role in regulating E. coli cell division is much less well understood. Here, we characterize a novel dominant negative mutant of Era (Era647) that uncouples these two activities when overproduced; it inhibits cell division by disrupting assembly of the Z ring, without significantly affecting ribosome production. The unique properties of this mutant should help to elucidate how Era regulates cell division and coordinates this process with ribosome biogenesis.


Asunto(s)
Puntos de Control del Ciclo Celular , División Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Unión al GTP/genética , Proteínas Mutantes/metabolismo , Proteínas de Unión al ARN/genética
2.
EMBO J ; 21(15): 4154-61, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12145215

RESUMEN

Efficient expression of most bacteriophage lambda early genes depends upon the formation of an antiterminating transcription complex to overcome transcription terminators in the early operons, p(L) and p(R). Formation of this complex requires the phage-encoded protein N, the first gene product expressed from the p(L) operon. The N leader RNA contains, in this order: the NUTL site, an RNase III-sensitive hairpin and the N ribosome-binding site. N bound to NUTL RNA is part of both the antitermination complex and an autoregulatory complex that represses the translation of the N gene. In this study, we show that cleavage of the N leader by RNase III does not inhibit antitermination but prevents N-mediated translation repression of N gene expression. In fact, by preventing N autoregulation, RNase III activates N gene translation at least 200-fold. N-mediated translation repression is extremely sensitive to growth rate, reflecting the growth rate regulation of RNase III expression itself. Given N protein's critical role in lambda development, the level of RNase III activity therefore serves as an important sensor of physiological conditions for the bacteriophage.


Asunto(s)
Endorribonucleasas/fisiología , Proteínas de Escherichia coli/fisiología , Regulación Viral de la Expresión Génica/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas Represoras/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Regiones no Traducidas 5'/metabolismo , Bacteriófago lambda/fisiología , Secuencia de Bases , Medios de Cultivo , Escherichia coli/virología , Galactoquinasa/genética , Genes Reporteros , Operón Lac , Lisogenia/fisiología , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Precursores del ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Ribonucleasa III
3.
Nat Struct Biol ; 10(10): 789-93, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12958592

RESUMEN

Assembly of the bacterial flagellum and type III secretion in pathogenic bacteria require cytosolic export chaperones that interact with mobile components to facilitate their secretion. Although their amino acid sequences are not conserved, the structures of several type III secretion chaperones revealed striking similarities between their folds and modes of substrate recognition. Here, we report the first crystallographic structure of a flagellar export chaperone, Aquifex aeolicus FliS. FliS adopts a novel fold that is clearly distinct from those of the type III secretion chaperones, indicating that they do not share a common evolutionary origin. However, the structure of FliS in complex with a fragment of FliC (flagellin) reveals that, like the type III secretion chaperones, flagellar export chaperones bind their target proteins in extended conformation and suggests that this mode of recognition may be widely used in bacteria.


Asunto(s)
Flagelos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Bacterias/química , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelina/química , Flagelina/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
J Biol Chem ; 277(52): 50564-72, 2002 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-12377789

RESUMEN

Because of its stringent sequence specificity, the 3C-type protease from tobacco etch virus (TEV) is frequently used to remove affinity tags from recombinant proteins. It is unclear, however, exactly how TEV protease recognizes its substrates with such high selectivity. The crystal structures of two TEV protease mutants, inactive C151A and autolysis-resistant S219D, have now been solved at 2.2- and 1.8-A resolution as complexes with a substrate and product peptide, respectively. The enzyme does not appear to have been perturbed by the mutations in either structure, and the modes of binding of the product and substrate are virtually identical. Analysis of the protein-ligand interactions helps to delineate the structural determinants of substrate specificity and provides guidance for reengineering the enzyme to further improve its utility for biotechnological applications.


Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Potyvirus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Nicotiana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA