Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Exp Bot ; 75(10): 3141-3152, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38375924

RESUMEN

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.


Asunto(s)
Aclimatación , Bosques , Pinus sylvestris , Agua , Pinus sylvestris/fisiología , Pinus sylvestris/anatomía & histología , Pinus sylvestris/crecimiento & desarrollo , Agua/metabolismo , Agua/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Riego Agrícola , Sequías , Árboles/fisiología , Árboles/anatomía & histología
2.
New Phytol ; 239(2): 533-546, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235688

RESUMEN

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Asunto(s)
Hojas de la Planta , Árboles , Árboles/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Agua/fisiología , Sequías , Fluidoterapia
3.
Plant Cell Environ ; 46(9): 2747-2762, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37427808

RESUMEN

Tropical forests are experiencing increases in vapour pressure deficit (D), with possible negative impacts on tree growth. Tree-growth reduction due to rising D is commonly attributed to carbon limitation, thus overlooking the potentially important mechanism of D-induced impairment of wood formation due to an increase in turgor limitation. Here we calibrate a mechanistic tree-growth model to simulate turgor limitation of radial stem growth in mature Toona cilitata trees in an Asian tropical forest. Hourly sap flow and dendrometer measurements were collected to simulate turgor-driven growth during the growing season. Simulated seasonal patterns of radial stem growth matched well with growth observations. Growth mainly occurred at night and its pre-dawn build-up appeared to be limited under higher D. Across seasons, the night-time turgor pressure required for growth was negatively related to previous midday D, possibly due to a relatively high canopy conductance at high D, relative to stem rehydration. These findings provide the first evidence that tropical trees grow at night and that turgor pressure limits tree growth. We suggest including turgor limitation of tree stem growth in models also for tropical forest carbon dynamics, in particular, if these models simulate effects of warming and increased frequency of droughts.


Asunto(s)
Bosque Lluvioso , Árboles , Presión de Vapor , Agua , Bosques , Carbono , Clima Tropical
4.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451586

RESUMEN

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del Año
5.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
6.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050584

RESUMEN

Adaptive human-computer systems require the recognition of human behavior states to provide real-time feedback to scaffold skill learning. These systems are being researched extensively for intervention and training in individuals with autism spectrum disorder (ASD). Autistic individuals are prone to social communication and behavioral differences that contribute to their high rate of unemployment. Teamwork training, which is beneficial for all people, can be a pivotal step in securing employment for these individuals. To broaden the reach of the training, virtual reality is a good option. However, adaptive virtual reality systems require real-time detection of behavior. Manual labeling of data is time-consuming and resource-intensive, making automated data annotation essential. In this paper, we propose a semi-supervised machine learning method to supplement manual data labeling of multimodal data in a collaborative virtual environment (CVE) used to train teamwork skills. With as little as 2.5% of the data manually labeled, the proposed semi-supervised learning model predicted labels for the remaining unlabeled data with an average accuracy of 81.3%, validating the use of semi-supervised learning to predict human behavior.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Realidad Virtual , Humanos , Aprendizaje Automático Supervisado , Comunicación
7.
BMC Emerg Med ; 23(1): 81, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532997

RESUMEN

BACKGROUND: Paramedics are increasingly being called to attend patients dying from advanced incurable conditions. However, confidence to deal with such calls varies, with many feeling relatively unskilled in this aspect of their role. A number of interventions have been piloted to improve their skills in end-of-life care (EoLC) but without a fully specified theoretical model. Theory of Change models can provide theoretical and testable links from intervention activities to proposed long-term outcomes and indicate the areas for assessment of effectiveness. This study aimed to develop an intervention for improving paramedic EoLC for patients in the community. METHODS: A Theory of Change approach was used as the overarching theoretical framework for developing an intervention to improve paramedic end-of-life skills. Nine stakeholders - including specialist community paramedics, ambulance call handlers and palliative care specialists - were recruited to five consecutive online workshops, ranging between 60 and 90 min. Each workshop had 2-3 facilitators. Over multiple workshops, stakeholders decided on the desired impact, short- and long-term outcomes, and possible interventions. During and between these workshops a Theory of Change model was created, with the components shared with stakeholders. RESULTS: The stakeholders agreed the desired impact was to provide consistent, holistic, patient-centred, and effective EoLC. Four potential long-term outcomes were suggested: (1) increased use of anticipatory and regular end-of-life medications; (2) reduced end-of-life clinical and medication errors; (3) reduced unnecessary hospitalisations; (4) increased concordance between patient preferred and actual place of death. Key interventions focused on providing immediate information on what to do in such situations including: appraising the situation, developing an algorithm for a treatment plan (including whether or not to convey to hospital) and how to identify ongoing support in the community. CONCLUSIONS: A Theory of Change approach was effective at identifying impact, outcomes, and the important features of an end-of-life intervention for paramedics. This study identified the need for paramedics to have immediate access to information and resources to support EoLC, which the workshop stakeholders are now seeking to develop as an intervention.


Asunto(s)
Auxiliares de Urgencia , Cuidado Terminal , Humanos , Paramédico , Cuidado Terminal/métodos , Cuidados Paliativos , Muerte
8.
Ecol Lett ; 25(2): 427-439, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34882952

RESUMEN

Radial stem growth dynamics at seasonal resolution are essential to understand how forests respond to climate change. We studied daily radial growth of 160 individuals of seven temperate tree species at 47 sites across Switzerland over 8 years. Growth of all species peaked in the early part of the growth season and commenced shortly before the summer solstice, but with species-specific seasonal patterns. Day length set a window of opportunity for radial growth. Within this window, the probability of daily growth was constrained particularly by air and soil moisture, resulting in intermittent growth to occur only on 29 to 77 days (30% to 80%) within the growth period. The number of days with growth largely determined annual growth, whereas the growth period length contributed less. We call for accounting for these non-linear intra-annual and species-specific growth dynamics in tree and forest models to reduce uncertainties in predictions under climate change.


Asunto(s)
Cambio Climático , Suelo , Humanos , Estaciones del Año , Especificidad de la Especie
9.
Artículo en Inglés | MEDLINE | ID: mdl-35113201

RESUMEN

Animals signals must be detected by receiver sensory systems, and overcome a variety of local ecological factors that could otherwise affect their transmission and reception. Habitat structure, competition, avoidance of unintended receivers and varying environmental conditions have all been shown to influence how animals signal. Environmental noise is also crucial, and animals modify their behavior in response to it. Animals generating movement-based visual signals have to contend with wind-blown plants that generate motion noise and can affect the detection of salient movements. The lizard Amphibolurus muricatus uses tail flicking at the start of displays to attract attention, and we hypothesized that tail movements are ideally suited to this function. We compared visual amplitudes generated by tail movements with push-ups, which are a key component of the rest of the display. We show that tail movement amplitudes are highly variable over the course of the display but consistently greater than amplitudes generated by push-ups and not constrained by viewing position. We suggest that these features, combined with the tail being a light structure that does not compromise other activities, provide an ideal introductory component for attracting attention in the ecological setting in which they are generated.


Asunto(s)
Lagartos , Percepción de Movimiento , Comunicación Animal , Animales , Atención , Lagartos/fisiología , Movimiento (Física) , Cola (estructura animal)/fisiología
10.
New Phytol ; 231(6): 2174-2185, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34118158

RESUMEN

The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 yr. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.


Asunto(s)
Bosques , Árboles , Carbono , Suelo , Agua
11.
New Phytol ; 229(1): 213-229, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32790914

RESUMEN

A valid representation of intra-annual wood formation processes in global vegetation models is vital for assessing climate change impacts on the forest carbon stock. Yet, wood formation is generally modelled with photosynthesis, despite mounting evidence that cambial activity is rather directly constrained by limiting environmental factors. Here, we apply a state-of-the-art turgor-driven growth model to simulate 4 yr of hourly stem radial increment from Picea abies (L.) Karst. and Larix decidua Mill. growing along an elevational gradient. For the first time, wood formation observations were used to validate weekly to annual stem radial increment simulations, while environmental measurements were used to assess the climatic constraints on turgor-driven growth. Model simulations matched the observed timing and dynamics of wood formation. Using the detailed model outputs, we identified a strict environmental regulation on stem growth (air temperature > 2°C and soil water potential > -0.6 MPa). Warmer and drier summers reduced the growth rate as a result of turgor limitation despite warmer temperatures being favourable for cambial activity. These findings suggest that turgor is a central driver of the forest carbon sink and should be considered in next-generation vegetation models, particularly in the context of global warming and increasing frequency of droughts.


Asunto(s)
Picea , Pinus , Tracheophyta , Cámbium , Sequías , Árboles , Madera
12.
New Phytol ; 226(5): 1325-1340, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31998968

RESUMEN

Efforts to develop mechanistic tree growth models are hindered by the uncertainty of whether and when tree growth responses to environmental factors are driven by carbon assimilation or by biophysical limitations of wood formation. In this study, we used multiannual weekly wood-formation monitoring of two conifer species (Larix decidua and Picea abies) along a 900 m elevational gradient in the Swiss Alps to assess the biophysical effect of temperature and water potential on wood formation. To this end, we developed a model that simulates the effect of water potential on turgor-driven cambial division, modulated by the effect of temperature on enzymatic activity. The model reproduced the observed phenology of tracheid production, as well as intra- and interannual tracheid production dynamics of both species along the elevational gradient, although interannual model performance was lower. We found that temperature alone explains the onset of tracheid production, yet water potential appears necessary to predict the ending and the total amount of tracheids produced annually. We conclude that intra-annual cambial activity is strongly constrained by both temperature and water potential at all elevations, independently of carbon assimilation. At the interannual scale, biophysical constraints likely interact with other factors.


Asunto(s)
Picea , Cámbium , Estaciones del Año , Temperatura , Agua
13.
Plant Cell Environ ; 42(4): 1222-1232, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30326549

RESUMEN

Conifer trees possess a typical anatomical tree-ring structure characterized by a transition from large and thin-walled earlywood tracheids to narrow and thick-walled latewood tracheids. However, little is known on how this characteristic structure is maintained across contrasting environmental conditions, due to its crucial role to ensure sap ascent and mechanical support. In this study, we monitored weekly wood cell formation for up to 7 years in two temperate conifer species (i.e., Picea abies (L.) Karst and Larix decidua Mill.) across an 8°C thermal gradient from 800 to 2,200 m a.s.l. in central Europe to investigate the impact of air temperature on rate and duration of wood cell formation. Results indicated that towards colder sites, forming tracheids compensate a decreased rate of differentiation (cell enlarging and wall thickening) by an extended duration, except for the last cells of the latewood in the wall-thickening phase. This compensation allows conifer trees to mitigate the influence of air temperature on the final tree-ring structure, with important implications for the functioning and resilience of the xylem to varying environmental conditions. The disappearing compensation in the thickening latewood cells might also explain the higher climatic sensitivity usually found in maximum latewood density.


Asunto(s)
Diferenciación Celular , Larix/anatomía & histología , Picea/anatomía & histología , Madera/anatomía & histología , Diferenciación Celular/fisiología , Cinética , Larix/crecimiento & desarrollo , Larix/fisiología , Picea/crecimiento & desarrollo , Picea/fisiología , Temperatura , Madera/citología , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo
14.
Plant Cell Environ ; 42(5): 1674-1689, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30536787

RESUMEN

Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.


Asunto(s)
Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Tracheophyta , Adaptación Fisiológica , Sequías , Larix/fisiología , Pinus/fisiología , Suelo , Temperatura , Tracheophyta/fisiología , Agua/fisiología
16.
New Phytol ; 219(4): 1283-1299, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29862531

RESUMEN

Trees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (Fd ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration. Their contribution has been assessed using a stem segment calibration experiment and 4 yr of TDM measurements in Picea abies and Larix decidua growing in contrasting environments. Uncertainties were then projected on TDM data from different conifers across the northern hemisphere. Commonly applied methods mostly underestimated absolute Fd . Lacking a site- and species-specific calibrations reduced our stand water-use measurements by 37% and induced uncertainty in northern hemisphere Fd . Additionally, although the interdaily variability was maintained, disregarding dampening and/or applying zero-flow conditions that ignored night-time water use reduced the correlation between environment and Fd . The presented ensemble of calibration curves and proposed dampening correction, together with the systematic quantification of data-processing uncertainties, provide crucial steps in improving whole-tree water-use estimates across spatial and temporal scales.


Asunto(s)
Reología , Temperatura , Tracheophyta/fisiología , Incertidumbre , Calibración , Modelos Lineales , Especificidad de la Especie , Factores de Tiempo , Árboles/fisiología , Agua
17.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655212

RESUMEN

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Asunto(s)
Hojas de la Planta/anatomía & histología , Árboles/crecimiento & desarrollo , Madera/anatomía & histología , Europa (Continente) , Geografía , Modelos Estadísticos , Especificidad de la Especie , Árboles/anatomía & histología , Xilema/anatomía & histología
19.
Am J Occup Ther ; 72(4): 7204195030p1-7204195030p9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29953833

RESUMEN

OBJECTIVE: Homelessness prematurely ages people. A large subgroup of formerly homeless adults between ages 40 and 64 yr have health conditions similar to or worse than people categorized as elderly. Little is known about the impact of this group's chronic health conditions on their ability to safely function in supportive housing. METHOD: Home safety visits were carried out with 25 formerly homeless adults, ages 40-64 yr, now residing in supportive housing. RESULTS: Participants had physical, cognitive, and mental health problems that significantly interfered with their ability to perform daily life skills, safely function in an apartment, and manage chronic health conditions. Home safety hazards included cluttered walking paths, the presence of steps, and the lack of grab bars and nonskid flooring. CONCLUSION: The homeless population would benefit from aging specialists, such as occupational therapists, who could help people to maintain and function more safely in their homes. Without such services, this population may be at risk for home safety events leading to hospitalization and mortality.


Asunto(s)
Accidentes por Caídas/prevención & control , Envejecimiento/fisiología , Personas con Mala Vivienda/psicología , Trastornos Mentales/rehabilitación , Adulto , Envejecimiento/psicología , Vivienda , Humanos , Persona de Mediana Edad
20.
Artículo en Inglés | MEDLINE | ID: mdl-28573349

RESUMEN

Signaling species occurring in sympatry are often exposed to similar environmental constraints, so similar adaptations to enhance signal efficacy are expected. However, potentially opposing selective pressures might be present to ensure species recognition. Here, we analyzed the movement-based signals of two pairs of sympatric lizard species to consider how reliable communication is maintained while avoiding misidentification. Our novel approach allows us to quantify signal contrast with plant motion noise at any site we measure, including those utilized by other species. Ctenophorus caudicinctus and Gowidon longirostris differed in display complexity and motor pattern use. They also differed in overall morphology, but their signal contrast scores are strikingly similar. These results demonstrate similar adaptations to their shared environment while maintaining species recognition cues. In contrast, Ctenophorus fordi and Ctenophorus pictus are much closer in appearance, but C. pictus produces considerably higher signal contrast scores, which we suggest is attributable to the absence of territoriality in C. fordi. Taken together, our data provide evidence for adaptation to the local environment in movement-based signals, while also meeting species recognition requirements, but the selective pressure to deal with local conditions is mediated by signal function.


Asunto(s)
Lagartos/fisiología , Transducción de Señal , Adaptación Fisiológica , Animales , Australia , Ambiente , Lagartos/anatomía & histología , Especificidad de la Especie , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA