Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 25(1): 138, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946201

RESUMEN

PURPOSE: To investigate combined MRI and 18F-FDG PET for assessing breast tumor metabolism/perfusion mismatch and predicting pathological response and recurrence-free survival (RFS) in women treated for breast cancer. METHODS: Patients undergoing neoadjuvant chemotherapy (NAC) for locally-advanced breast cancer were imaged at three timepoints (pre, mid, and post-NAC), prior to surgery. Imaging included diffusion-weighted and dynamic contrast-enhanced (DCE-) MRI and quantitative 18F-FDG PET. Tumor imaging measures included apparent diffusion coefficient, peak percent enhancement (PE), peak signal enhancement ratio (SER), functional tumor volume, and washout volume on MRI and standardized uptake value (SUVmax), glucose delivery (K1) and FDG metabolic rate (MRFDG) on PET, with percentage changes from baseline calculated at mid- and post-NAC. Associations of imaging measures with pathological response (residual cancer burden [RCB] 0/I vs. II/III) and RFS were evaluated. RESULTS: Thirty-five patients with stage II/III invasive breast cancer were enrolled in the prospective study (median age: 43, range: 31-66 years, RCB 0/I: N = 11/35, 31%). Baseline imaging metrics were not significantly associated with pathologic response or RFS (p > 0.05). Greater mid-treatment decreases in peak PE, along with greater post-treatment decreases in several DCE-MRI and 18F-FDG PET measures were associated with RCB 0/I after NAC (p < 0.05). Additionally, greater mid- and post-treatment decreases in DCE-MRI (peak SER, washout volume) and 18F-FDG PET (K1) were predictive of prolonged RFS. Mid-treatment decreases in metabolism/perfusion ratios (MRFDG/peak PE, MRFDG/peak SER) were associated with improved RFS. CONCLUSION: Mid-treatment changes in both PET and MRI measures were predictive of RCB status and RFS following NAC. Specifically, our results indicate a complementary relationship between DCE-MRI and 18F-FDG PET metrics and potential value of metabolism/perfusion mismatch as a marker of patient outcome.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Adulto , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Fluorodesoxiglucosa F18/uso terapéutico , Terapia Neoadyuvante/métodos , Radiofármacos/uso terapéutico , Estudios Prospectivos , Resultado del Tratamiento , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
2.
Breast Cancer Res ; 23(1): 88, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425871

RESUMEN

PURPOSE: This study evaluated the ability of 18F-Fluorodeoxyglucose (FDG) and 18F-Fluorothymidine (FLT) imaging with positron emission tomography (PET) to measure early response to endocrine therapy from baseline to just prior to surgical resection in estrogen receptor positive (ER+) breast tumors. METHODS: In two separate studies, women with early stage ER+ breast cancer underwent either paired FDG-PET (n = 22) or FLT-PET (n = 27) scans prior to endocrine therapy and again in the pre-operative setting. Tissue samples for Ki-67 were taken for all patients both prior to treatment and at the time of surgery. RESULTS: FDG maximum standardized uptake value (SUVmax) declined in 19 of 22 lesions (mean 17% (range -45 to 28%)). FLT SUVmax declined in 24 of 27 lesions (mean 26% (range -77 to 7%)). The Ki-67 index declined in both studies, from pre-therapy (mean 23% (range 1 to 73%)) to surgery [mean 8% (range < 1 to 41%)]. Pre- and post-therapy PET measures showed strong rank-order agreement with Ki-67 percentages for both tracers; however, the percent change in FDG or FLT SUVmax did not demonstrate a strong correlation with Ki-67 index change or Ki-67 at time of surgery. CONCLUSIONS: A window-of-opportunity approach using PET imaging to assess early response of breast cancer therapy is feasible. FDG and FLT-PET imaging following a short course of neoadjuvant endocrine therapy demonstrated measurable changes in SUVmax in early stage ER+ positive breast cancers. The percentage change in FDG and FLT-PET uptake did not correlate with changes in Ki-67; post-therapy SUVmax for both tracers was significantly associated with post-therapy Ki-67, an established predictor of endocrine therapy response.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Didesoxinucleósidos/uso terapéutico , Fluorodesoxiglucosa F18/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/cirugía , Femenino , Humanos , Antígeno Ki-67/metabolismo , Mastectomía , Persona de Mediana Edad , Terapia Neoadyuvante , Tomografía de Emisión de Positrones , Radiofármacos/uso terapéutico , Receptores de Estrógenos/metabolismo , Resultado del Tratamiento
3.
Eur J Nucl Med Mol Imaging ; 48(12): 3990-4001, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33677641

RESUMEN

PURPOSE: Probe-based dynamic (4-D) imaging modalities capture breast intratumor heterogeneity both spatially and kinetically. Characterizing heterogeneity through tumor sub-populations with distinct functional behavior may elucidate tumor biology to improve targeted therapy specificity and enable precision clinical decision making. METHODS: We propose an unsupervised clustering algorithm for 4-D imaging that integrates Markov-Random Field (MRF) image segmentation with time-series analysis to characterize kinetic intratumor heterogeneity. We applied this to dynamic FDG PET scans by identifying distinct time-activity curve (TAC) profiles with spatial proximity constraints. We first evaluated algorithm performance using simulated dynamic data. We then applied our algorithm to a dataset of 50 women with locally advanced breast cancer imaged by dynamic FDG PET prior to treatment and followed to monitor for disease recurrence. A functional tumor heterogeneity (FTH) signature was then extracted from functionally distinct sub-regions within each tumor. Cross-validated time-to-event analysis was performed to assess the prognostic value of FTH signatures compared to established histopathological and kinetic prognostic markers. RESULTS: Adding FTH signatures to a baseline model of known predictors of disease recurrence and established FDG PET uptake and kinetic markers improved the concordance statistic (C-statistic) from 0.59 to 0.74 (p = 0.005). Unsupervised hierarchical clustering of the FTH signatures identified two significant (p < 0.001) phenotypes of tumor heterogeneity corresponding to high and low FTH. Distributions of FDG flux, or Ki, were significantly different (p = 0.04) across the two phenotypes. CONCLUSIONS: Our findings suggest that imaging markers of FTH add independent value beyond standard PET imaging metrics in predicting recurrence-free survival in breast cancer and thus merit further study.


Asunto(s)
Neoplasias de la Mama , Fluorodesoxiglucosa F18 , Biomarcadores , Neoplasias de la Mama/diagnóstico por imagen , Análisis por Conglomerados , Femenino , Humanos , Recurrencia Local de Neoplasia , Tomografía de Emisión de Positrones , Pronóstico
5.
J Natl Compr Canc Netw ; 14(2): 144-7, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26850484

RESUMEN

Changes in estrogen receptor (ER) expression over the course of therapy may affect response to endocrine therapy. However, measuring temporal changes in ER expression requires serial biopsies, which are impractical and poorly tolerated by most patients. Functional ER imaging using (18)F-fluoroestradiol (FES)-PET provides a noninvasive measure of regional ER expression and is ideally suited to serial studies. Additionally, lack of measurable FES uptake in metastatic sites of disease predict tumor progression in patients with ER-positive primary tumors treated with endocrine therapy. This report presents a case of restored sensitivity to endocrine therapy in a patient with bone-dominant breast cancer who underwent serial observational FES-PET imaging over the course of several treatments at our center, demonstrating the temporal heterogeneity of regional ER expression. Although loss and restoration of endocrine sensitivity in patients who have undergone prior hormonal and cytotoxic treatments has been reported, this is, to our knowledge, the first time the accompanying changes in ER expression have been documented by molecular imaging.


Asunto(s)
Huesos/metabolismo , Huesos/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Receptores de Estrógenos/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Femenino , Humanos , Persona de Mediana Edad , Imagen Molecular/métodos , Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación
6.
EJNMMI Res ; 14(1): 32, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536511

RESUMEN

BACKGROUND: Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients that have bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases. METHODS: For this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified by the most commonly used PET parameter, the maximum tumor voxel normalized by dose and body weight (SUVmax) and also by the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals for SUVmax and SULpeak were used to determine the limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS: The mean relative difference of SUVmax and SULpeak in 38 bone tumors of the first cohort were 4.3% and 6.7%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and - 16.3% for SUVmax, and 21.2% and - 17.5% for SULpeak. 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification using SULpeak for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria for SULpeak changed the status of 3 patients compared to the standard Positron Emission Tomography Response Criteria in Solid Tumors of ± 30% SULpeak. CONCLUSION: In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG SUVmax, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions in these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.

7.
Res Sq ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313279

RESUMEN

BACKGROUND: Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients with bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases.In this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified as the maximum tumor voxel normalized by dose and body weight (SUVmax) and the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals of SUVmax and SULpeak were used to determine limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS: The mean relative difference of SUVmax in 38 bone tumors of the first cohort was 4.3%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and -16.3%, respectively. The 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria changed the status of 3 patients compared to standard the standard Positron Emission Tomography Response Criteria in Solid Tumors of ±30% SULpeak. CONCLUSIONS: In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG uptake, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions from these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.

8.
J Nucl Med ; 64(3): 351-354, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36863779

RESUMEN

PET imaging with 16α-18F-fluoro-17ß-fluoroestradiol (18F-FES), a radiolabeled form of estradiol, allows whole-body, noninvasive evaluation of estrogen receptor (ER). 18F-FES is approved by the U.S. Food and Drug Administration as a diagnostic agent "for the detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or metastatic breast cancer." The Society of Nuclear Medicine and Molecular Imaging (SNMMI) convened an expert work group to comprehensively review the published literature for 18F-FES PET in patients with ER-positive breast cancer and to establish appropriate use criteria (AUC). The findings and discussions of the SNMMI 18F-FES work group, including example clinical scenarios, were published in full in 2022 and are available at https://www.snmmi.org/auc Of the clinical scenarios evaluated, the work group concluded that the most appropriate uses of 18F-FES PET are to assess ER functionality when endocrine therapy is considered either at initial diagnosis of metastatic breast cancer or after progression of disease on endocrine therapy, the ER status of lesions that are difficult or dangerous to biopsy, and the ER status of lesions when other tests are inconclusive. These AUC are intended to enable appropriate clinical use of 18F-FES PET, more efficient approval of FES use by payers, and promotion of investigation into areas requiring further research. This summary includes the rationale, methodology, and main findings of the work group and refers the reader to the complete AUC document.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Femenino , Humanos , Biopsia , Neoplasias de la Mama/diagnóstico por imagen , Imagen Molecular , Tomografía de Emisión de Positrones , Estados Unidos , Estradiol/metabolismo
9.
J Nucl Med ; 62(2): 184-190, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32591490

RESUMEN

Histone deacetylase inhibitors (HDACIs) may overcome endocrine resistance in estrogen receptor-positive (ER+) metastatic breast cancer. We tested whether 18F-fluoroestradiol PET imaging would elucidate the pharmacodynamics of combination HDACIs and endocrine therapy. Methods: Patients with ER+/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer with prior clinical benefit from endocrine therapy but later progression on aromatase inhibitor (AI) therapy were given vorinostat (400 mg daily) sequentially or simultaneously with AI. 18F-fluoroestradiol PET and 18F-FDG PET scans were performed at baseline, week 2, and week 8. Results: Eight patients were treated sequentially, and then 15 simultaneously. Eight patients had stable disease at week 8, and 6 of these 8 patients had more than 6 mo of stable disease. Higher baseline 18F-fluoroestradiol uptake was associated with longer progression-free survival. 18F-fluoroestradiol uptake did not systematically increase with vorinostat exposure, indicating no change in regional ER estradiol binding, and 18F-FDG uptake did not show a significant decrease, as would have been expected with tumor regression. Conclusion: Simultaneous HDACIs and AI dosing in patients with cancer resistant to AI alone showed clinical benefit (6 or more months without progression) in 4 of 10 evaluable patients. Higher 18F-fluoroestradiol PET uptake identified patients likely to benefit from combination therapy, but vorinostat did not change ER expression at the level of detection of 18F-fluoroestradiol PET.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Estradiol/análogos & derivados , Tomografía de Emisión de Positrones , Receptores de Estrógenos/metabolismo , Vorinostat/farmacología , Adulto , Anciano , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Persona de Mediana Edad , Metástasis de la Neoplasia , Receptor ErbB-2/metabolismo
10.
11.
J Nucl Med ; 60(5): 608-614, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30361381

RESUMEN

Calibration and reproducibility of quantitative 18F-FDG PET measures are essential for adopting integral 18F-FDG PET/CT biomarkers and response measures in multicenter clinical trials. We implemented a multicenter qualification process using National Institute of Standards and Technology-traceable reference sources for scanners and dose calibrators, and similar patient and imaging protocols. We then assessed SUV in patient test-retest studies. Methods: Five 18F-FDG PET/CT scanners from 4 institutions (2 in a National Cancer Institute-designated Comprehensive Cancer Center, 3 in a community-based network) were qualified for study use. Patients were scanned twice within 15 d, on the same scanner (n = 10); different but same model scanners within an institution (n = 2); or different model scanners at different institutions (n = 11). SUVmax was recorded for lesions, and SUVmean for normal liver uptake. Linear mixed models with random intercept were fitted to evaluate test-retest differences in multiple lesions per patient and to estimate the concordance correlation coefficient. Bland-Altman plots and repeatability coefficients were also produced. Results: In total, 162 lesions (82 bone, 80 soft tissue) were assessed in patients with breast cancer (n = 17) or other cancers (n = 6). Repeat scans within the same institution, using the same scanner or 2 scanners of the same model, had an average difference in SUVmax of 8% (95% confidence interval, 6%-10%). For test-retest on different scanners at different sites, the average difference in lesion SUVmax was 18% (95% confidence interval, 13%-24%). Normal liver uptake (SUVmean) showed an average difference of 5% (95% confidence interval, 3%-10%) for the same scanner model or institution and 6% (95% confidence interval, 3%-11%) for different scanners from different institutions. Protocol adherence was good; the median difference in injection-to-acquisition time was 2 min (range, 0-11 min). Test-retest SUVmax variability was not explained by available information on protocol deviations or patient or lesion characteristics. Conclusion:18F-FDG PET/CT scanner qualification and calibration can yield highly reproducible test-retest tumor SUV measurements. Our data support use of different qualified scanners of the same model for serial studies. Test-retest differences from different scanner models were greater; more resolution-dependent harmonization of scanner protocols and reconstruction algorithms may be capable of reducing these differences to values closer to same-scanner results.


Asunto(s)
Fluorodesoxiglucosa F18/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Anciano , Transporte Biológico , Calibración , Femenino , Humanos , Hígado/diagnóstico por imagen , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
12.
J Nucl Med ; 49(3): 367-74, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18287268

RESUMEN

UNLABELLED: The PET compound (18)F-fluoroestradiol ((18)F-FES) has been developed and tested as an agent for the imaging of estrogen receptor (ER) expression in vivo. (18)F-FES uptake has been shown to correlate with ER expression assayed in vitro by radioligand binding; however, immunohistochemistry (IHC) rather than radioligand binding is used most often to measure ER expression in clinical practice. We therefore compared (18)F-FES uptake with ER expression assayed in vitro by IHC with both qualitative and semiquantitative measures. METHODS: Seventeen patients with primary or metastatic breast cancer were studied with dynamic (18)F-FES PET; cancer tissue samples, collected close to the time of imaging, were assayed for ER expression by IHC. For each tumor, partial-volume-corrected measures of (18)F-FES uptake were compared with ER expression measured by 3 different ER scoring methods: qualitative scoring (0-3+), the Allred score (0-10), and a computerized IHC index. RESULTS: There was excellent agreement (r = 0.99) between observers using IHC as well as the different methods of measuring ER content (P < 0.001). ER-negative tumors had (18)F-FES partial-volume-corrected standardized uptake values of less than 1.0, whereas ER-positive tumors had values above 1.1. Correlation coefficients for the different measures of ER content and the different measures of (18)F-FES uptake ranged from 0.57 to 0.73, with the best correlation being between the computerized IHC index and (18)F-FES partial-volume-corrected standardized uptake values. CONCLUSION: Our results showed good agreement between (18)F-FES PET and ER expression measured by IHC. (18)F-FES imaging may be a useful tool for aiding in the assessment of ER status, especially in patients with multiple tumors or for tumors that are difficult to biopsy.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Estradiol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Receptores de Estrógenos/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Estradiol/farmacocinética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
PET Clin ; 13(3): 415-422, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30100079

RESUMEN

Molecular imaging using 16α-[18F]fluoro-17ß-estradiol (FES) and 18F-fluoro-furanyl-norprogesterone PET can assess in vivo function of steroid hormone receptors in breast cancer. These experimental agents have been tested in many single-center clinical trials and show promise to elucidate prognosis and predict endocrine therapy response. The current multicenter trial of FES-PET imaging will help bring this radiotracer closer to clinical use. There is tremendous potential for these tracers to advance drug development, enhance understanding of estrogen receptor-positive tumor biology, and personalize treatment.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Estradiol/análogos & derivados , Femenino , Fluorodesoxiglucosa F18 , Humanos
14.
J Nucl Med ; 59(12): 1823-1830, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29748233

RESUMEN

Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18F-FDG PET was predictive of time to skeletal-related events (tSRE) and time to progression (TTP). 18F-NaF PET improves bone metastasis detection compared with bone scanning. We prospectively tested 18F-FDG PET and 18F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (MBC). Methods: Patients with bone-dominant MBC were imaged with 18F-FDG PET and 18F-NaF PET before starting new therapy (scan1) and again at a range of times centered around approximately 4 mo later (scan2). Maximum standardized uptake value (SUVmax) and lean body mass adjusted standardized uptake (SULpeak) were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18F-FDG PET and 18F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) were also applied. Survival curves for mPERCIST compared response categories of complete response+partial response+stable disease versus progressive disease for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher 18F-FDG SULpeak at scan2 predicted shorter time to tSRE (P = <0.001) and TTP (P = 0.044). Higher 18F-FDG SUVmax at scan2 predicted a shorter time to tSRE (P = <0.001). A multivariable model using 18F-FDG SUVmax of the index lesion at scan1 plus the difference in SUVmax of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18F-FDG PET mPERCIST, tSRE and TTP were longer in responders (complete response, partial response, or stable disease) than in nonresponders (progressive disease) (P = 0.007, 0.028, respectively), with a trend toward improved survival (P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18F-NaF PET was associated with longer OS (P = 0.027). Conclusion: Changes in 18F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18F-NaF PET was associated with OS but was not useful for predicting TTP or tSRE in bone-dominant MBC.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Tomografía de Emisión de Positrones/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/mortalidad , Progresión de la Enfermedad , Femenino , Radioisótopos de Flúor , Fluorodesoxiglucosa F18 , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Radiofármacos
15.
J Nucl Med ; 48(6): 920-5, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17504870

RESUMEN

UNLABELLED: The response of cancer to chemotherapy can be quantified using (18)F-FDG to indicate changes in tumor metabolism. Quantification using the standardized uptake value (SUV) is more feasible for clinical practice than is the metabolic rate of (18)F-FDG (MRFDG), which requires longer, dynamic scanning. The relationship between MRFDG and SUV depends in part on how each accounts for blood clearance of tracer. We tested whether chemotherapy and treatment with granulocyte colony-stimulating factor (CSF) changed the blood clearance curves and therefore affected the relationship between MRFDG and SUV. METHODS: Thirty-nine patients with locally advanced breast cancer underwent (18)F-FDG PET before and after chemotherapy, including granulocyte CSF. The area under the curve (AUC) for blood clearance was determined before and after therapy. MRFDGs were determined by graphical analyses, whereas SUVs were calculated using the standard formula normalized by body weight. MRFDG and SUVs were compared with each other and with tumor response. Paired percentage changes in MRFDG and SUV were also divided into tertiles based on pretherapy SUV to investigate differences in the relative sensitivity of SUV changes to MRFDG changes due to baseline tumor uptake. RESULTS: Despite a small but statistically significant 6% decrease in blood AUCs after therapy (P = 0.02), SUV and MRFDG did not differ significantly in slope (P = 0.53) or in correlation before and after therapy (r = 0.95 for both). Percentage changes in MRFDG and SUV between serial scans correlated with each other (r = 0.84) and with patient response (P

Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Radiofármacos/farmacocinética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/tratamiento farmacológico , Femenino , Filgrastim , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Tomografía de Emisión de Positrones , Proteínas Recombinantes
16.
Clin Cancer Res ; 12(18): 5435-41, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17000677

RESUMEN

PURPOSE: Advanced head and neck cancer shows hypoxia that results in biological changes to make the tumor cells more aggressive and less responsive to treatment resulting in poor survival. [F-18] fluoromisonidazole (FMISO) positron emission tomography (PET) has the ability to noninvasively quantify regional hypoxia. We investigated the prognostic effect of pretherapy FMISO-PET on survival in head and neck cancer. EXPERIMENTAL DESIGN: Seventy-three patients with head and neck cancer had pretherapy FMISO-PET and 53 also had fluorodeoxyglucose (FDG) PET under a research protocol from April 1994 to April 2004. RESULTS: Significant hypoxia was identified in 58 patients (79%). The mean FMISO tumor/bloodmax (T/Bmax) was 1.6 and the mean hypoxic volume (HV) was 40.2 mL. There were 28 deaths in the follow-up period. Mean FDG standard uptake value (SUV)max was 10.8. The median time for follow-up was 72 weeks. In a univariate analysis, T/Bmax (P=0.002), HV (P=0.04), and the presence of nodes (P=0.01) were strong independent predictors. In a multivariate analysis, including FDG SUVmax, no variable was predictive at P<0.05. When FDG SUVmax was removed from the model (resulting in n=73 with 28 events), nodal status and T/Bmax (or HV) were both highly predictive (P=0.02, 0.006 for node and T/Bmax, respectively; P=0.02 and 0.001 for node and HV, respectively). CONCLUSIONS: Pretherapy FMISO uptake shows a strong trend to be an independent prognostic measure in head and neck cancer.


Asunto(s)
Hipoxia de la Célula , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Anciano , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/secundario , Fluorodesoxiglucosa F18 , Estudios de Seguimiento , Neoplasias de Cabeza y Cuello/secundario , Humanos , Persona de Mediana Edad , Análisis Multivariante , Análisis de Supervivencia
17.
Phys Med Biol ; 62(9): 3639-3655, 2017 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-28191877

RESUMEN

We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i = 17%, SUV = 13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i = 0.54, SUV = 0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC < 1), dynamic imaging outperformed SUV in distinguishing metabolic change in response to therapy, ranging from 12 to 14 of 16 patients over all SUV definitions and uptake time scenarios (p < 0.05). For the patient cohort in this study, which is comprised of non-high-grade ER+ tumors, K i outperformed SUV in an ROC analysis of the parameter uncertainty distributions pre- and post-therapy. This methodology can be applied to different scenarios with the ability to inform the design of clinical trials using PET imaging.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/tratamiento farmacológico , Simulación por Computador , Femenino , Fluorodesoxiglucosa F18 , Humanos , Persona de Mediana Edad , Tomografía de Emisión de Positrones/normas , Radiofármacos
18.
Clin Cancer Res ; 23(2): 407-415, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27342400

RESUMEN

PURPOSE: 18F-fluoroestradiol (FES) PET scans measure regional estrogen binding, and 18F-fluorodeoxyglucose (FDG) PET measures tumor glycolytic activity. We examined quantitative and qualitative imaging biomarkers of progression-free survival (PFS) in breast cancer patients receiving endocrine therapy. EXPERIMENTAL DESIGN: Ninety patients with breast cancer from an estrogen receptor-positive (ER+), HER2- primary tumor underwent FES PET and FDG PET scans prior to endocrine therapy (63% aromatase inhibitor, 22% aromatase inhibitor and fulvestrant, 15% other). Eighty-four had evaluable data for PFS prediction. RESULTS: Recursive partitioning with 5-fold internal cross-validation used both FES PET and FDG PET measures to classify patients into three distinct response groups. FDG PET identified 24 patients (29%) with low FDG uptake, suggesting indolent tumors. These patients had a median PFS of 26.1 months (95% confidence interval, 11.2-49.7). Of patients with more FDG-avid tumors, 50 (59%) had high average FES uptake, and 10 (12%) had low average FES uptake. These groups had median PFS of 7.9 (5.6-11.8) and 3.3 months (1.4-not evaluable), respectively. Patient and tumor features did not replace or improve the PET measures' prediction of PFS. Prespecified endocrine resistance classifiers identified in smaller cohorts did not individually predict PFS. CONCLUSIONS: A wide range of therapy regimens are available for treatment of ER+ metastatic breast cancer, but no guidelines are established for sequencing these therapies. FDG PET and FES PET may help guide the timing of endocrine therapy and selection of targeted and/or cytotoxic chemotherapy. A multicenter trial is ongoing for external validation. Clin Cancer Res; 23(2); 407-15. ©2016 AACR.


Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama Masculina/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Adulto , Anciano , Inhibidores de la Aromatasa/administración & dosificación , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama Masculina/diagnóstico por imagen , Neoplasias de la Mama Masculina/genética , Neoplasias de la Mama Masculina/patología , Supervivencia sin Enfermedad , Estradiol/administración & dosificación , Estradiol/análogos & derivados , Femenino , Fluorodesoxiglucosa F18/uso terapéutico , Fulvestrant , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Tomografía de Emisión de Positrones , Radiofármacos/uso terapéutico , Receptor ErbB-2/genética
19.
J Nucl Med ; 57(2): 226-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26493206

RESUMEN

UNLABELLED: Uptake time (interval between tracer injection and image acquisition) affects the SUV measured for tumors in (18)F-FDG PET images. With dissimilar uptake times, changes in tumor SUVs will be under- or overestimated. This study examined the influence of uptake time on tumor response assessment using a virtual clinical trials approach. METHODS: Tumor kinetic parameters were estimated from dynamic (18)F-FDG PET scans of breast cancer patients and used to simulate time-activity curves for 45-120 min after injection. Five-minute uptake time frames followed 4 scenarios: the first was a standardized static uptake time (the SUV from 60 to 65 min was selected for all scans), the second was uptake times sampled from an academic PET facility with strict adherence to standardization protocols, the third was a distribution similar to scenario 2 but with greater deviation from standards, and the fourth was a mixture of hurried scans (45- to 65-min start of image acquisition) and frequent delays (58- to 115-min uptake time). The proportion of out-of-range scans (<50 or >70 min, or >15-min difference between paired scans) was 0%, 20%, 44%, and 64% for scenarios 1, 2, 3, and 4, respectively. A published SUV correction based on local linearity of uptake-time dependence was applied in a separate analysis. Influence of uptake-time variation was assessed as sensitivity for detecting response (probability of observing a change of ≥30% decrease in (18)F-FDG PET SUV given a true decrease of 40%) and specificity (probability of observing an absolute change of <30% given no true change). RESULTS: Sensitivity was 96% for scenario 1, and ranged from 73% for scenario 4 (95% confidence interval, 70%-76%) to 92% (90%-93%) for scenario 2. Specificity for all scenarios was at least 91%. Single-arm phase II trials required an 8%-115% greater sample size for scenarios 2-4 than for scenario 1. If uptake time is known, SUV correction methods may raise sensitivity to 87%-95% and reduce the sample size increase to less than 27%. CONCLUSION: Uptake-time deviations from standardized protocols occur frequently, potentially decreasing the performance of (18)F-FDG PET response biomarkers. Correcting SUV for uptake time improves sensitivity, but algorithm refinement is needed. Stricter uptake-time control and effective correction algorithms could improve power and decrease costs for clinical trials using (18)F-FDG PET endpoints.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Anciano , Algoritmos , Biomarcadores , Neoplasias de la Mama/terapia , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Radiofármacos/farmacocinética , Estándares de Referencia , Reproducibilidad de los Resultados , Tamaño de la Muestra
20.
Clin Cancer Res ; 8(11): 3315-23, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12429617

RESUMEN

PURPOSE: Tumor proliferation has prognostic value in resected early stage non-small cell lung cancer (NSCLC) and can, therefore, predict which NSCLCs are at high risk for recurrence after resection and would benefit from additional therapy. It may also predict which tumor will respond to cell cycle-targeted chemotherapy and help assess the tumor response, besides helping to differentiate benign from malignant lung lesions. We evaluated whether the uptake of the new positron emission tomography (PET) tracer 3'deoxy-3'-[18F]fluorothymidine (FLT) in a series of suspected NSCLCs correlated with tumor proliferation assessed by Ki-67 immunohistochemistry and flow cytometry. EXPERIMENTAL DESIGN: Ten patients with 11 biopsy-proven or clinically suspected NSCLC underwent 2-h dynamic PET imaging after i.v. injection of 0.07 mCi/kg FLT. Tumor FLT uptake was quantitated with the maximum pixel standardized uptake value (maxSUV), the partial volume corrected maxSUV (PV-corr-maxSUV), the average SUV over a small region-of-interest (aveSUV) and with Patlak analysis of FLT flux (aveFLTflux). The lesion diameter from computed tomography was used to correct the maxSUV for PV effects using recovery coefficients determined for the General Electric Advance PET scanner. Two of the 11 lesions were benign inflammatory lesions and 9 were NSCLCs. Immunohistochemistry for Ki-67 (proliferation index marker) was performed on all 11 tissue specimens (10 resections, 1 NSCLC percutaneous biopsy), and the S-phase fraction (SPF) from flow cytometry could be determined for 10. The specimens were reviewed for histology and cellular differentiation (poor, moderate, well). Lesions ranged from 1.6 to 7.7 cm. RESULTS: Excellent correlations were found between SUV measures of FLT uptake and Ki-67 scores [percentage of positive cells; maxSUV versus Ki-67: Rho = 0.78, P = 0.0043 (n = 11); PV-corr-maxSUV versus Ki-67: Rho = 0.83, P = 0.0028 (n = 10); aveSUV versus Ki-67: Rho = 0.84, P = 0.0011 (n = 11)]. Correlation between Ki-67 proliferation scores and Patlak measures of FLT uptake were also strong: aveFLTflux versus Ki-67: Rho = 0.94, P < 0.0001 (n = 11). The correlation between the SPF and all indices of FLT uptake was weaker and reached statistical significance for only two uptake indices [maxSUV versus SPF: Rho = 0.69, P = 0.03 (n = 10); PV-corr-maxSUV versus SPF: Rho = 0.36, P = 0.35 (n = 9); aveSUV versus SPF: Rho = 0.67, P = 0.03 (n = 10); aveFLTflux versus SPF: Rho = 0.46, P = 0.18 (n = 10)]. CONCLUSION: FLT PET may be used to noninvasively assess proliferation rates of lung masses in vivo. Therefore, FLT PET may play a significant role in the evaluation of indeterminate pulmonary lesions, in the prognostic assessment of resectable NSCLC, and possibly in the evaluation of NSCLC response to chemotherapy.


Asunto(s)
Didesoxinucleósidos/farmacología , Colorantes Fluorescentes/farmacología , Tomografía Computarizada de Emisión/métodos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , División Celular , Citometría de Flujo , Radioisótopos de Flúor/farmacología , Humanos , Inmunohistoquímica , Antígeno Ki-67/biosíntesis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA