Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 24(9): 4368-4385, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29790239

RESUMEN

Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO2 ) levels on survival, growth, morphological development and swimming performance on the early life stages of a large circumglobal pelagic fish, the yellowtail kingfish Seriola lalandi. Eggs, larvae and juveniles were reared in cross-factored treatments of temperature (21 and 25°C) and pCO2 (500 and 985 µatm) from fertilisation to 25 days post hatching (dph). Temperature had the greatest effect on survival, growth and development. Survivorship was lower, but growth and morphological development were faster at 25°C, with surviving fish larger and more developed at 1, 11 and 21 dph. Elevated pCO2 affected size at 1 dph, but not at 11 or 21 dph, and did not affect survival or morphological development. Elevated temperature and pCO2 had opposing effects on swimming performance at 21 dph. Critical swimming speed (Ucrit ) was increased by elevated temperature but reduced by elevated pCO2 . Additionally, elevated temperature increased the proportion of individuals that responded to a startle stimulus, reduced latency to respond and increased maximum escape speed, potentially due to the more advanced developmental stage of juveniles at 25°C. By contrast, elevated pCO2 reduced the distance moved and average speed in response to a startle stimulus. Our results show that higher temperature is likely to be the primary driver of global change impacts on kingfish early life history; however, elevated pCO2 could affect critical aspects of swimming performance in this pelagic species. Our findings will help parameterise and structure fisheries population dynamics models and improve projections of impacts to large pelagic fishes under climate change scenarios to better inform adaptation and mitigation responses.


Asunto(s)
Dióxido de Carbono/efectos adversos , Calor/efectos adversos , Perciformes/fisiología , Agua de Mar/química , Natación , Animales , Océanos y Mares , Perciformes/crecimiento & desarrollo
2.
Mar Environ Res ; 157: 104863, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32275516

RESUMEN

Elevated seawater CO2 can cause a range of behavioural impairments in marine fishes. However, most studies to date have been conducted on small benthic species and very little is known about how higher oceanic CO2 levels could affect the behaviour of large pelagic species. Here, we tested the effects of elevated CO2, and where possible the interacting effects of high temperature, on a range of ecologically important behaviours (anxiety, routine activity, behavioural lateralization and visual acuity) in juvenile yellowtail kingfish, Seriola lalandi. Kingfish were reared from the egg stage to 25 days post-hatch in a full factorial design of ambient and elevated CO2 (~500 and ~1000 µatm pCO2) and temperature (21 °C and 25 °C). The effects of elevated CO2 were trait-specific with anxiety the only behaviour significantly affected. Juvenile S. lalandi reared at elevated CO2 spent more time in the dark zone during a standard black-white test, which is indicative of increased anxiety. Exposure to high temperature had no significant effect on any of the behaviours tested. Overall, our results suggest that juvenile S. lalandi are largely behaviourally tolerant to future ocean acidification and warming. Given the ecological and economic importance of large pelagic fish species more studies investigating the effect of future climate change are urgently needed.


Asunto(s)
Conducta Animal , Dióxido de Carbono/química , Peces/fisiología , Agua de Mar/química , Animales , Ansiedad , Concentración de Iones de Hidrógeno , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA