Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Heredity (Edinb) ; 131(1): 1-14, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37185615

RESUMEN

Spatial patterns of genetic variation compared across species provide information about the predictability of genetic diversity in natural populations, and areas requiring conservation measures. Due to their remarkable fish diversity, rivers in Neotropical regions are ideal systems to confront theory with observations and would benefit greatly from such approaches given their increasing vulnerability to anthropogenic pressures. We used SNP data from 18 fish species with contrasting life-history traits, co-sampled across 12 sites in the Maroni- a major river system from the Guiana Shield -, to compare patterns of intraspecific genetic variation and identify their underlying drivers. Analyses of covariance revealed a decrease in genetic diversity as distance from the river outlet increased for 5 of the 18 species, illustrating a pattern commonly observed in riverscapes for species with low-to-medium dispersal abilities. However, the mean within-site genetic diversity was lowest in the two easternmost tributaries of the Upper Maroni and around an urbanized location downstream, indicating the need to address the potential influence of local pressures in these areas, such as gold mining or fishing. Finally, the relative influence of isolation by stream distance, isolation by discontinuous river flow, and isolation by spatial heterogeneity in effective size on pairwise genetic differentiation varied across species. Species with similar dispersal and reproductive guilds did not necessarily display shared patterns of population structure. Increasing the knowledge of specific life history traits and ecological requirements of fish species in these remote areas should help further understand factors that influence their current patterns of genetic variation.


Asunto(s)
Flujo Genético , Variación Genética , Animales , Ríos , Ecosistema
2.
Mol Ecol ; 30(20): 5048-5063, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34402111

RESUMEN

Within-species genetic diversity is crucial for the persistence and integrity of populations and ecosystems. Conservation actions require an understanding of factors influencing genetic diversity, especially in the context of global change. Both population size and connectivity are factors greatly influencing genetic diversity; the relative importance of these factors can, however, change through time. Hence, quantifying the degree to which population size or genetic connectivity are shaping genetic diversity, and at which ecological time scale (past or present), is challenging, yet essential for the development of efficient conservation strategies. In this study, we estimated the genetic diversity of 42 colonies of Rhinolophus hipposideros, a long-lived mammal vulnerable to global change, sampling locations spanning its continental northern range. Here, we present an integrative approach that disentangles and quantifies the contribution of different connectivity measures in addition to contemporary colony size and historic bottlenecks in shaping genetic diversity. In our study, the best model explained 64% of the variation in genetic diversity. It included historic bottlenecks, contemporary colony size, connectivity and a negative interaction between the latter two. Contemporary connectivity explained most genetic diversity when considering a 65 km radius around the focal colonies, emphasizing the large geographic scale at which the positive impact of connectivity on genetic diversity is most profound and hence, the minimum scale at which conservation should be planned. Our results highlight that the relative importance of the two main factors shaping genetic diversity varies through time, emphasizing the relevance of disentangling them to ensure appropriate conservation strategies.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite , Animales , Conservación de los Recursos Naturales , Ecosistema , Variación Genética , Mamíferos/genética , Densidad de Población
3.
Mol Ecol ; 29(16): 2963-2977, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32105386

RESUMEN

Age-related telomere shortening is considered a hallmark of the ageing process. However, a recent cross-sectional ageing study of relative telomere length (rTL) in bats failed to detect a relationship between rTL and age in the long-lived genus Myotis (M. myotis and M. bechsteinii), suggesting some other factors are responsible for driving telomere dynamics in these species. Here, we test if longitudinal rTL data show signatures of age-associated telomere attrition in M. myotis and differentiate which intrinsic or extrinsic factors are likely to drive telomere length dynamics. Using quantitative polymerase chain reaction, rTL was measured in 504 samples from a marked population, from Brittany, France, captured between 2013 and 2016. These represent 174 individuals with an age range of 0 to 7+ years. We find no significant relationship between rTL and age (p = .762), but demonstrate that within-individual rTL is highly variable from year to year. To investigate the heritability of rTL, a population pedigree (n = 1744) was constructed from genotype data generated from a 16-microsatellite multiplex, designed from an initial, low-coverage, Illumina genome for M. myotis. Heritability was estimated in a Bayesian, mixed model framework, and showed that little of the observed variance in rTL is heritable (h2  = 0.01-0.06). Rather, correlations of first differences, correlating yearly changes in telomere length and weather variables, demonstrate that, during the spring transition, average temperature, minimum temperature, rainfall and windspeed correlate with changes in longitudinal telomere dynamics. As such, rTL may represent a useful biomarker to quantify the physiological impact of various environmental stressors in bats.


Asunto(s)
Quirópteros , Animales , Teorema de Bayes , Niño , Preescolar , Quirópteros/genética , Estudios Transversales , Francia , Humanos , Lactante , Recién Nacido , Telómero/genética , Acortamiento del Telómero/genética
4.
Proc Biol Sci ; 286(1894): 20182359, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963865

RESUMEN

The effective size of a population is the size of an ideal population which would undergo genetic drift at the same rate as the real population. The balance between selection and genetic drift depends on the effective population size ( Ne), rather than the real numbers of individuals in the population ( N). The objectives of the present study were to estimate Ne in the potato cyst nematode Globodera pallida and to explore the causes of a low Ne/ N ratio in cyst nematodes using artificial populations. Using a temporal analysis of 24 independent populations, the median Ne was 58 individuals (min Ne = 25 and max Ne = 228). Ne is commonly lower than N but in the case of cyst nematodes, the Ne/ N ratio was extremely low. Using artificial populations showed that this low ratio did not result from migration, selection and overlapping generations, but could be explain by the fact that G. pallida populations deviate in structure from the assumptions of the ideal population by having unequal sex ratios, high levels of inbreeding and a high variance in family sizes. The consequences of a low Ne, resulting in a strong intensity of genetic drift, could be important for their control because G. pallida populations will have a low capacity to adapt to changing environments.


Asunto(s)
Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Tylenchoidea/fisiología , Animales , Densidad de Población
5.
Mol Ecol ; 28(19): 4375-4387, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31495006

RESUMEN

Recent theoretical and experimental models have revealed the role played by evolution during species spread, and in particular have questioned the influence of genetic drift at range edges. By investigating the spread of an aquatic invader in patchy habitats, we quantified genetic drift and explored its consequences for genetic diversity and fitness. We examined the interplay of gene flow and genetic drift in 36 populations of the red swamp crayfish, Procambarus clarkii, in a relatively recently invaded wetland area (30 years, Brière, northwest France). Despite the small spatial scale of our study (15 km2 ), populations were highly structured according to the strong barrier of land surfaces and revealed a clear pattern of colonization through watercourses. Isolated populations exhibited small effective sizes and low dispersal rates that depended on water connectivity, suggesting that genetic drift dominated in the evolution of allele frequencies in these populations. We also observed a significant decrease in the genetic diversity of isolated populations over only a 2-year period, but failed to demonstrate an associated fitness cost using fluctuating asymmetry. This study documents the possible strong influence of genetic drift during the spread of a species, and such findings provide critical insights into the current context of profound rearrangements in species distributions due to global change.


Asunto(s)
Astacoidea/genética , Flujo Génico , Frecuencia de los Genes , Flujo Genético , Animales , Ecosistema , Femenino , Francia , Genética de Población , Masculino , Humedales
6.
J Environ Manage ; 244: 61-68, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31108311

RESUMEN

Landscape connectivity promotes dispersal and other types of movement, including foraging activity; consequently, the inclusion of connectivity concept is a priority in conservation and landscape planning in response to fragmentation. Urban planners expect the scientific community to provide them with an easy, but scientifically rigorous, method to identify highly connecting contexts in landscapes. The least-cost paths (LCP) method is one of the simplest resistance-based models that could be a good candidate to spatially identify areas where movement is potentially favored in a given landscape. We tested the efficiency of LCP predictions to detect highly connecting landscape contexts facilitating individual movements compared to those performed in un-connecting landscape contexts. We used a landscape-level behavioral experiment based on a translocation protocol and individual repeated measures. In the city of Rennes (France), 30 male hedgehogs (Erinaceus europaeus) were translocated and radio-tracked in both highly connecting and un-connecting contexts, respectively, which were determined by the presence and absence of modelled LCPs. Individual movement patterns were compared between the two predicted contexts. Individuals travelled longer distances, moved faster, and were more active in the highly connecting contexts compared to the un-connecting contexts. Moreover, in highly connecting contexts, hedgehog movement followed LCP orientation, with individuals using more wooded habitats than other land cover class. By using a rigorous experimental design, this study validated the ecological relevance of LCP analysis to identify highly connecting areas, and could be easily implemented by urban landscape planners.


Asunto(s)
Planificación de Ciudades , Ecología , Ciudades , Ecosistema , Francia , Humanos
7.
BMC Evol Biol ; 18(1): 175, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458712

RESUMEN

BACKGROUND: The distinction between lineages of neotropical bats from the Pteronotus parnellii species complex has been previously made according to mitochondrial DNA, and especially morphology and acoustics, in order to separate them into two species. In these studies, either sample sizes were too low when genetic and acoustic or morphological data were gathered on the same individuals, or genetic and other data were collected on different individuals. In this study, we intensively sampled bats in 4 caves and combined all approaches in order to analyse genetic, morphologic, and acoustic divergence between these lineages that live in the same caves in French Guiana. RESULTS: A multiplex of 20 polymorphic microsatellite markers was developed using the 454-pyrosequencing technique to investigate for the first time the extent of reproductive isolation between the two lineages and the population genetic structure within lineages. We genotyped 748 individuals sampled between 2010 and 2015 at the 20 nuclear microsatellite loci and sequenced a portion of the cytochrome c oxydase I gene in a subset of these. Two distinct, non-overlapping haplogroups corresponding to cryptic species P. alitonus and P. rubiginosus were revealed, in accordance with previous findings. No spatial genetic structure between caves was detected for both species. Hybridization appeared to be quite limited (0.1-4%) using microsatellite markers whereas introgression was more common (7.5%) and asymmetric for mitochondrial DNA (mtDNA). CONCLUSIONS: The extremely low rate of hybridization could be explained by differences in life cycle phenology between species as well as morphological and acoustical distinction between sexes in one or the other species. Taken together, these results add to our growing understanding of the nature of species boundaries in Pteronotus parnelli, but deserve more in-depth studies to understand the evolutionary processes underlying asymmetric mtDNA introgression in this group of cryptic species.


Asunto(s)
Acústica , Quirópteros/genética , Ecosistema , Simpatría/fisiología , Animales , Núcleo Celular/genética , Quirópteros/anatomía & histología , Ecolocación , Guyana Francesa , Genotipo , Repeticiones de Microsatélite/genética , Reproducción , Especificidad de la Especie
8.
Mol Ecol ; 27(6): 1357-1370, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29412498

RESUMEN

Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation-by-distance and isolation-by-resistance models for this land snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale-dependent processes.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite/genética , Caracoles/genética , Animales , Ecosistema , Ambiente , Dinámica Poblacional , Caracoles/fisiología
9.
Oecologia ; 184(4): 749-761, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28695278

RESUMEN

Climatic variables are often considered when studying environmental impacts on population dynamics of terrestrial species. However, the temporal resolution considered varies depending on studies, even among studies of the same taxa. Most studies interested in climatic impacts on populations tend to average climatic data across timeframes covering life cycle periods of the organism in question or longer, even though most climatic databases provide at least a monthly resolution. We explored the impact of climatic variables on lesser horseshoe bat (Rhinolophus hipposideros) demography based on count data collected at 94 maternity colonies from 2000 to 2014 in Britanny, France. Meteorological data were considered using different time resolutions (month, life cycle period and year) to investigate their adequacy. Model averaging was used to detect significant predictors for each temporal resolution. Our results show that the finest temporal resolution, e.g. month, was more informative than coarser ones. Precipitation predictors were particularly decisive, with a negative impact on colony sizes when rainfall occurred in October, and a positive impact for June precipitations. Fecundity was influenced by April weather. This highlights the strong impact of climatic conditions during crucial but short time periods on the population dynamics of bats. We demonstrate the importance of choosing an appropriate time resolution and suggest that analogous studies should consider fine-scale temporal resolution (e.g. month) to better grasp the relationship between population dynamics and climatic conditions.


Asunto(s)
Quirópteros , Animales , Demografía , Francia , Dinámica Poblacional
10.
Mol Ecol ; 24(22): 5491-4, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26769309

RESUMEN

The white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave-dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.


Asunto(s)
Quirópteros/genética , Quirópteros/microbiología , Enfermedades Transmisibles Emergentes/veterinaria , Genética de Población , Micosis/veterinaria , Animales
11.
Mol Ecol ; 24(8): 1654-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25735762

RESUMEN

Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances.


Asunto(s)
Variación Genética , Heterocigoto , Tylenchoidea/genética , Alelos , Animales , Beta vulgaris/parasitología , Frecuencia de los Genes , Genética de Población , Genotipo , Endogamia , Funciones de Verosimilitud , Repeticiones de Microsatélite , Solanum tuberosum/parasitología , Nicotiana/parasitología
12.
Mol Ecol ; 22(15): 4055-70, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23889545

RESUMEN

The demographic history of Rhinolophus hipposideros (lesser horseshoe bat) was reconstructed across its European, North African and Middle-Eastern distribution prior to, during and following the most recent glaciations by generating and analysing a multimarker data set. This data set consisted of an X-linked nuclear intron (Bgn; 543 bp), mitochondrial DNA (cytb-tRNA-control region; 1630 bp) and eight variable microsatellite loci for up to 373 individuals from 86 localities. Using this data set of diverse markers, it was possible to determine the species' demography at three temporal stages. Nuclear intron data revealed early colonization into Europe from the east, which pre-dates the Quaternary glaciations. The mtDNA data supported multiple glacial refugia across the Mediterranean, the largest of which were found in the Ibero-Maghreb region and an eastern location (Anatolia/Middle East)-that were used by R. hipposideros during the most recent glacial cycles. Finally, microsatellites provided the most recent information on these species' movements since the Last Glacial Maximum and suggested that lineages that had diverged into glacial refugia, such as in the Ibero-Maghreb region, have remained isolated. These findings should be used to inform future conservation management strategies for R. hipposideros and show the power of using a multimarker data set for phylogeographic studies.


Asunto(s)
Quirópteros/genética , ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Animales , Secuencia de Bases , Biglicano/genética , Citocromos b/genética , Europa (Continente) , Evolución Molecular , Frecuencia de los Genes , Marcadores Genéticos/genética , Variación Genética , Haplotipos/genética , Filogeografía , Análisis de Secuencia de ADN
13.
Mol Ecol ; 21(3): 647-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22168272

RESUMEN

The impact of ecology and social organization on genetic structure at landscape spatial scales, where gene dynamics shape evolution as well as determine susceptibility to habitat fragmentation, is poorly understood. Attempts to assess these effects must take into account the potentially confounding effects of history. We used microsatellites to compare genetic structure in seven bat species with contrasting patterns of roosting ecology and social organization, all of which are codistributed in an ancient forest habitat that has been exceptionally buffered from radical habitat shifts. Over one thousand individuals were captured at foraging sites and genotyped at polymorphic microsatellite loci. Analyses of spatially explicit genotype data revealed interspecies differences in the extent of movement and gene flow and genetic structure across continuous intact forest. Highest positive genetic structure was observed in tree-roosting taxa that roost either alone or in small groups. By comparison, a complete absence of genetic autocorrelation was noted in the cave-roosting colonial species across the study area. Our results thus reveal measurable interspecies differences in the natural limits of gene flow in an unmodified habitat, which we attribute to contrasting roosting ecology and social organization. The consequences of ecology and behaviour for gene flow have important implications for conservation. In particular, tree-roosting species characterized by lower vagility and thus gene flow will be disproportionally impacted by landscape-scale forest clearance and habitat fragmentation, which are prevalent in the study region. Our method also highlights the usefulness of rapid sampling of foraging bats for assaying genetic structure, particularly where roosting sites are not always known.


Asunto(s)
Quirópteros/genética , Población , Conducta Sexual Animal , Conducta Social , Animales , Fenómenos Ecológicos y Ambientales , Ecosistema , Flujo Génico , Jerarquia Social , Repeticiones de Microsatélite , Especificidad de la Especie
14.
BMC Evol Biol ; 11: 362, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22177339

RESUMEN

BACKGROUND: Non-human primate communication is thought to be fundamentally different from human speech, mainly due to vast differences in vocal control. The lack of these abilities in non-human primates is especially striking if compared to some marine mammals and bird species, which has generated somewhat of an evolutionary conundrum. What are the biological roots and underlying evolutionary pressures of the human ability to voluntarily control sound production and learn the vocal utterances of others? One hypothesis is that this capacity has evolved gradually in humans from an ancestral stage that resembled the vocal behavior of modern primates. Support for this has come from studies that have documented limited vocal flexibility and convergence in different primate species, typically in calls used during social interactions. The mechanisms underlying these patterns, however, are currently unknown. Specifically, it has been difficult to rule out explanations based on genetic relatedness, suggesting that such vocal flexibility may not be the result of social learning. RESULTS: To address this point, we compared the degree of acoustic similarity of contact calls in free-ranging Campbell's monkeys as a function of their social bonds and genetic relatedness. We calculated three different indices to compare the similarities between the calls' frequency contours, the duration of grooming interactions and the microsatellite-based genetic relatedness between partners. We found a significantly positive relation between bond strength and acoustic similarity that was independent of genetic relatedness. CONCLUSION: Genetic factors determine the general species-specific call repertoire of a primate species, while social factors can influence the fine structure of some the call types. The finding is in line with the more general hypothesis that human speech has evolved gradually from earlier primate-like vocal communication.


Asunto(s)
Evolución Biológica , Haplorrinos/fisiología , Aprendizaje , Conducta Social , Vocalización Animal , Animales , Haplorrinos/genética , Humanos , Primates , Habla
15.
Ecol Lett ; 14(6): 582-90, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21564453

RESUMEN

The potential for parallel impacts of habitat change on multiple biodiversity levels has important conservation implications. We report on the first empirical test of the 'species-genetic diversity correlation' across co-distributed taxa with contrasting ecological traits in the context of habitat fragmentation. In a rainforest landscape undergoing conversion to oil palm, we show that depauperate species richness in fragments is mirrored by concomitant declines in population genetic diversity in the taxon predicted to be most susceptible to fragmentation. This association, not seen in the other species, relates to fragment area rather than isolation. While highlighting the over-simplification of extrapolating across taxa, we show that fragmentation presents a double jeopardy for some species. For these, conserving genetic diversity at levels of pristine forest could require sites 15-fold larger than those needed to safeguard species numbers. Importantly, however, each fragment contributes to regional species richness, with larger ones tending to contain more species.


Asunto(s)
Biodiversidad , Quirópteros/genética , Árboles , Animales , Quirópteros/fisiología , Repeticiones de Microsatélite , Dinámica Poblacional , Aislamiento Social , Clima Tropical
16.
Folia Primatol (Basel) ; 81(1): 12-5, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20197664

RESUMEN

Population genetic analyses are of considerable importance for conservation strategies to protect endangered primates. We tested microsatellites of human origin with an aim to understand the genetic diversity of a West African forest guenon, Campbell's monkey, Cercopithecus campbelli. Twelve markers amplified successfully, were polymorphic and were inherited in a Mendelian fashion in a group of 4 individuals kept in captivity. These 12 markers were further amplified from 35 faecal samples collected in Taï National Park. These samples proved to originate from 18 free-ranging monkeys and showed that the 12 markers we developed for this species are polymorphic and suitable for future population genetic and parentage analyses.


Asunto(s)
Cercopithecus/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Animales , Animales Salvajes , Animales de Zoológico , ADN/genética , Femenino , Marcadores Genéticos , Masculino
17.
PLoS One ; 15(11): e0241429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151981

RESUMEN

Marine organisms show population structure at a relatively fine spatial scale, even in open habitats. The tools commonly used to assess subtle patterns of connectivity have diverse levels of resolution and can complement each other to inform on population structure. We assessed and compared the discriminatory power of genetic markers and otolith shape to reveal the population structure on evolutionary and ecological time scales of the common sole (Solea solea), living in the Eastern English Channel (EEC) stock off France and the UK. First, we genotyped fish with Single Nucleotide Polymorphisms to assess population structure at an evolutionary scale. Then, we tested for spatial segregation of the subunits using otolith shape as an integrative tracer of life history. Finally, a supervised machine learning framework was applied to genotypes and otolith phenotypes to probabilistically assign adults to subunits and assess the discriminatory power of each approach. Low but significant genetic differentiation was found among subunits. Moreover, otolith shape appeared to vary spatially, suggesting spatial population structure at fine spatial scale. However, results of the supervised discriminant analyses failed to discriminate among subunits, especially for otolith shape. We suggest that the degree of population segregation may not be strong enough to allow for robust fish assignments. Finally, this study revealed a weak yet existing metapopulation structure of common sole at the fine spatial scale of the EEC based on genotypes and otolith shape, with one subunit being more isolated. Our study argues for the use of complementary tracers to investigate marine population structure.


Asunto(s)
Peces Planos/anatomía & histología , Peces Planos/genética , Membrana Otolítica/anatomía & histología , Análisis de Varianza , Animales , Análisis Discriminante , Análisis de Fourier , Genotipo , Geografía , Dinámica Poblacional , Probabilidad , Reino Unido
18.
Nat Ecol Evol ; 3(7): 1110-1120, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182815

RESUMEN

Bats are the longest-lived mammals, given their body size. However, the underlying molecular mechanisms of their extended healthspans are poorly understood. To address this question we carried out an eight-year longitudinal study of ageing in long-lived bats (Myotis myotis). We deep-sequenced ~1.7 trillion base pairs of RNA from 150 blood samples collected from known aged bats to ascertain the age-related transcriptomic shifts and potential microRNA-directed regulation that occurred. We also compared ageing transcriptomic profiles between bats and other mammals by analysis of 298 longitudinal RNA sequencing datasets. Bats did not show the same transcriptomic changes with age as commonly observed in humans and other mammals, but rather exhibited a unique, age-related gene expression pattern associated with DNA repair, autophagy, immunity and tumour suppression that may drive their extended healthspans. We show that bats have naturally evolved transcriptomic signatures that are known to extend lifespan in model organisms, and identify novel genes not yet implicated in healthy ageing. We further show that bats' longevity profiles are partially regulated by microRNA, thus providing novel regulatory targets and pathways for future ageing intervention studies. These results further disentangle the ageing process by highlighting which ageing pathways contribute most to healthy ageing in mammals.


Asunto(s)
Quirópteros , Animales , Humanos , Longevidad , Estudios Longitudinales , Mamíferos , Transcriptoma
19.
Genetics ; 210(1): 315-330, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30061425

RESUMEN

The advent of high throughput sequencing and genotyping technologies enables the comparison of patterns of polymorphisms at a very large number of markers. While the characterization of genetic structure from individual sequencing data remains expensive for many nonmodel species, it has been shown that sequencing pools of individual DNAs (Pool-seq) represents an attractive and cost-effective alternative. However, analyzing sequence read counts from a DNA pool instead of individual genotypes raises statistical challenges in deriving correct estimates of genetic differentiation. In this article, we provide a method-of-moments estimator of [Formula: see text] for Pool-seq data, based on an analysis-of-variance framework. We show, by means of simulations, that this new estimator is unbiased and outperforms previously proposed estimators. We evaluate the robustness of our estimator to model misspecification, such as sequencing errors and uneven contributions of individual DNAs to the pools. Finally, by reanalyzing published Pool-seq data of different ecotypes of the prickly sculpin Cottus asper, we show how the use of an unbiased [Formula: see text] estimator may question the interpretation of population structure inferred from previous analyses.


Asunto(s)
Variación Genética/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/estadística & datos numéricos , Alelos , Simulación por Computador , ADN/genética , Bases de Datos Genéticas , Frecuencia de los Genes/genética , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple/genética
20.
Mol Ecol Resour ; 18(2): 217-228, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29058809

RESUMEN

Monitoring wild populations is crucial for their effective management. Noninvasive genetic methods provide robust data from individual free-ranging animals, which can be used in capture-mark-recapture (CMR) models to estimate demographic parameters without capturing or disturbing them. However, sex- and status-specific behaviour, which may lead to differences in detection probabilities, is rarely considered in monitoring. Here, we investigated population size, sex ratio, sex- and status-related behaviour in 19 Rhinolophus hipposideros maternity colonies (Northern France) with a noninvasive genetic CMR approach (using faeces) combined with parentage assignments. The use of the DDX3X/Y-Mam sexual marker designed in this study, which shows inter- and intrachromosomal length polymorphism across placental mammals, together with eight polymorphic microsatellite markers, produced high-quality genetic data with limited genotyping errors and allowed us to reliably distinguish different categories of individuals (males, reproductive and nonreproductive females) and to estimate population sizes. We showed that visual counts represent well-adult female numbers and that population composition in maternity colonies changes dynamically during the summer. Before parturition, colonies mainly harbour pregnant and nonpregnant females with a few visiting males, whereas after parturition, colonies are mainly composed of mothers and their offspring with a few visiting nonmothers and males. Our approach gives deeper insight into sex- and status-specific behaviour, a prerequisite for understanding population dynamics and developing effective monitoring and management strategies. Provided sufficient samples can be obtained, this approach can be readily applied to a wide range of species.


Asunto(s)
Quirópteros/clasificación , Quirópteros/genética , Genética de Población/métodos , Densidad de Población , Distribución por Sexo , Conducta Sexual Animal , Animales , Francia , Genotipo , Repeticiones de Microsatélite , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA