Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecology ; 104(1): e3872, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121050

RESUMEN

Hunting impacts tropical vertebrate populations, causing declines of species that function as seed dispersers and predators, or that browse seedlings and saplings. Whether and how the resulting reductions in seed dispersal, seed predation, and browsing translate to changes in the tree composition is poorly understood. Here, we assess the effect of defaunation on the functional composition of communities of tree recruits in tropical rainforests in French Guiana. We selected eight sites along a gradient of defaunation, caused by differences in hunting pressure, in otherwise intact old-growth forests in French Guiana. We measured shifts in functional composition by comparing leaf and fruit traits and wood density between tree recruits (up to 5 cm diameter at breast height) and adults, and tested whether and how these compositional shifts related to defaunation. We found a positive relationship with defaunation for shifts in specific leaf area, a negative relationship for shifts of leaf toughness and wood density, and a weak relationship for shifts in fruit traits. Our results suggest that the loss of vertebrates affects ecological processes such as seed dispersal and browsing, of which browsing remains understudied. Even though these changes sometimes seem minor, together they result in major shifts in forest composition. These changes have long-term ramifications that may alter forest dynamics for generations.


Asunto(s)
Bosques , Árboles , Animales , Guyana Francesa , Vertebrados , Hojas de la Planta , Clima Tropical , Ecosistema
2.
Ecology ; 104(7): e4053, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37079023

RESUMEN

Understanding how biotic interactions and environmental filtering mediated by soil properties shape plant community assembly is a major challenge in ecology, especially when studying complex and hyperdiverse ecosystems like tropical forests. To shed light on the influence of both factors, we examined how the edaphic optimum of species (their niche position) related to their edaphic range (their niche breadth) along different environmental gradients and how this translates into functional strategies. Here we tested four scenarios describing the shape of the niche breadth-niche position relationship, including one neutral scenario and three scenarios proposing different relative influences of abiotic and biotic factors on community assembly along a soil resource gradient. To do so, we used soil concentration data for five key nutrients (N, P, Ca, Mg, and K), along with accurate measurements of 14 leaf, stem, and root traits for 246 tree species inventoried in 101 plots located across Eastern (French Guiana) and Western (Peru) Amazonia. We found that species niche breadth increased linearly with species niche position along each soil nutrient gradient. This increase was associated with more resource acquisitive traits in the leaves and the roots for soil N, Ca, Mg, and K concentration, while it was negatively associated with wood density for soil P concentration. These observations agreed with one of our hypothetical scenarios in which species with resource conservation traits are confined to the most nutrient-depleted soils (abiotic filter), but they are outperformed by faster-growing species in more fertile conditions (biotic filter). Our results refine and strengthen support for niche theories of species assembly while providing an integrated approach to improving forest management policies.


Asunto(s)
Ecosistema , Árboles , Bosques , Madera , Suelo , Clima Tropical
3.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801913

RESUMEN

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Asunto(s)
Biodiversidad , Ecosistema , Entropía , Bosques , Plantas , Ecología , Clima Tropical
4.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795854

RESUMEN

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Asunto(s)
Bosques , Árboles , Biodiversidad , Brasil , Humanos
5.
Sci Rep ; 9(1): 11337, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383883

RESUMEN

Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in French Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. Our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups.


Asunto(s)
Biodiversidad , Ecosistema , Bosque Lluvioso , Clima Tropical , Animales , Hormigas/fisiología , Guyana Francesa , Hongos/fisiología , Invertebrados/fisiología , Filogenia , Suelo , Árboles/fisiología
6.
Ecology ; 100(10): e02806, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257578

RESUMEN

To decipher the long-term influences of pre-Columbian land occupations on contemporary forest structure, diversity, and functioning in Amazonia, most of the previous research focused on the alluvial plains of the major rivers of the Amazon basin. Terra firme, that is, nonflooded forests, particularly from the Guiana Shield, are yet to be explored. In this study, we aim to give new insights into the subtle traces of pre-Columbian influences on present-day forests given the archaeological context of terra firme forests of the Guiana Shield. Following archaeological prospects on 13 sites in French Guiana, we carried out forest inventories inside and outside archaeological sites and assessed the potential pre-Columbian use of the sampled tree species using an original ethnobotanical database of the Guiana Shield region. Aboveground biomass (320 and 380 T/ha, respectively), basal area (25-30 and 30-35 m2 /ha, respectively), and tree density (550 and 700 stem/ha, respectively) were all significantly lower on anthropized plots (As) than on nonanthropized plots (NAs). Ancient human presence shaped the species composition of the sampled forests with Arecaceae, Burseraceae, and Lauraceae significantly more frequent in As and Annonaceae and Lecythidaceae more frequent in NAs. Although alpha diversity was not different between As and NAs, the presence of pre-Columbian sites enhances significantly the forest beta diversity at the landscape level. Finally, trees with edible fruits are positively associated with pre-Columbian sites, whereas trees used for construction or for their bark are negatively associated with pre-Columbian sites. Half a millennium after their abandonment, former occupied places from the inner Guiana Shield still bear noticeable differences with nonanthropized places. Considering the lack of data concerning archaeology of terra firme Amazonian forests, our results suggest that pre-Columbian influences on the structure (lower current biomass), diversity (higher beta diversity), and composition (linked to the past human tree uses) of current Amazonian forests might be more important than previously thought.


Asunto(s)
Bosques , Árboles , Brasil , Guyana Francesa , Humanos , Ocupaciones
7.
Tree Physiol ; 38(7): 1071-1083, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29509954

RESUMEN

To date, reasons for the increase in liana abundance and biomass in the Neotropics are still unclear. One proposed hypothesis suggests that lianas, in comparison with trees, are more adaptable to drought conditions. Moreover, previous studies have assumed that lianas have a deeper root system, which provides access to deeper soil layers, thereby making them less susceptible to drought stress. The dual stable water isotope approach (δ18O and δ2H) enables below-ground vegetation competition for water to be studied. Based on the occurrence of a natural gradient in soil water isotopic signatures, with enriched signatures in shallow soil relative to deep soil, the origin of vegetation water sources can be derived. Our study was performed on canopy trees and lianas reaching canopy level in tropical forests of French Guiana. Our results show liana xylem water isotopic signatures to be enriched in heavy isotopes in comparison with those from trees, indicating differences in water source depths and a more superficial root activity for lianas during the dry season. This enables them to efficiently capture dry season precipitation. Our study does not support the liana deep root water extraction hypothesis. Additionally, we provide new insights into water competition between tropical canopy lianas and trees. Results suggest that this competition is mitigated during the dry season due to water resource partitioning.


Asunto(s)
Transpiración de Plantas , Plantas , Estaciones del Año , Árboles/fisiología , Sequías , Agua Subterránea , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/fisiología , Clima Tropical , Xilema/fisiología
8.
PLoS One ; 10(11): e0141488, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26535570

RESUMEN

We examined tree-soil habitat associations in lowland forest communities at Paracou, French Guiana. We analyzed a large dataset assembling six permanent plots totaling 37.5 ha, in which extensive LIDAR-derived topographical data and soil chemical and physical data have been integrated with precise botanical determinations. Map of relative elevation from the nearest stream summarized both soil fertility and hydromorphic characteristics, with seasonally inundated bottomlands having higher soil phosphate content and base saturation, and plateaus having higher soil carbon, nitrogen and aluminum contents. We employed a statistical test of correlations between tree species density and environmental maps, by generating Monte Carlo simulations of random raster images that preserve autocorrelation of the original maps. Nearly three fourths of the 94 taxa with at least one stem per ha showed a significant correlation between tree density and relative elevation, revealing contrasted species-habitat associations in term of abundance, with seasonally inundated bottomlands (24.5% of species) and well-drained plateaus (48.9% of species). We also observed species preferences for environments with or without steep slopes (13.8% and 10.6%, respectively). We observed that closely-related species were frequently associated with different soil habitats in this region (70% of the 14 genera with congeneric species that have a significant association test) suggesting species-habitat associations have arisen multiple times in this tree community. We also tested if species with similar habitat preferences shared functional strategies. We found that seasonally inundated forest specialists tended to have smaller stature (maximum diameter) than species found on plateaus. Our results underline the importance of tree-soil habitat associations in structuring diverse communities at fine spatial scales and suggest that additional studies are needed to disentangle community assembly mechanisms related to dispersal limitation, biotic interactions and environmental filtering from species-habitat associations. Moreover, they provide a framework to generalize across tropical forest sites.


Asunto(s)
Bosques , Modelos Biológicos , Suelo , Clima Tropical
9.
Nat Commun ; 6: 6857, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25919449

RESUMEN

While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.

10.
Phytochemistry ; 82: 81-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22863563

RESUMEN

Volatile terpenes are among the most diverse class of defensive compounds in plants, and they are implicated in both direct and indirect defense against herbivores. In terpenes, both the quantity and the diversity of compounds appear to increase the efficiency of defense as a diverse blend of compounds provides a more efficient protection against a broader range of herbivores and limits the chances that an enemy evolves resistance. Theory predicts that plant defensive compounds should be allocated differentially among tissues according to the value of the tissue, its cost of construction and the herbivore pressure on it. We collected volatile terpenes from bark and leaves of 178 individual tree belonging to 55 angiosperm species in French Guiana and compare the kind, amount, and diversity of compounds in these tissues. We hypothesized that in woody plants, the outermost part of the trunk should hold a more diverse blend of volatile terpenes. Additionally, as herbivore communities associated with the leaves is different to the one associated with the bark, we also hypothesized that terpene blends should be distinct in the bark vs. the leaves of a given species. We found that the mixture of volatile terpenes released by bark is different and more diverse than that released by leaves, both in monoterpenes and sesquiterpenes. This supports our hypothesis and further suggests that the emission of terpenes by the bark should be more important for trunk defense than previously thought.


Asunto(s)
Corteza de la Planta/química , Hojas de la Planta/química , Terpenos/análisis , Árboles/química , Clima Tropical , Volatilización
11.
PLoS One ; 4(10): e7483, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19834612

RESUMEN

BACKGROUND: Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. METHODOLOGY/PRINCIPAL FINDINGS: Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. CONCLUSION/SIGNIFICANCE: We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.


Asunto(s)
ADN de Plantas/genética , Árboles/clasificación , Árboles/genética , Biodiversidad , Análisis por Conglomerados , Procesamiento Automatizado de Datos , Guyana Francesa , Marcadores Genéticos , Modelos Estadísticos , Filogenia , Estaciones del Año , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA