RESUMEN
Mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3), also called extracellular regulated kinases (ERK2 and ERK1), are serine/threonine kinase activated downstream by the Ras/Raf/MEK/ERK signal transduction cascade that regulates a variety of cellular processes. A dysregulation of MAPK cascade is frequently associated to missense mutations on its protein components and may be related to many pathologies, including cancer. In this study we selected from COSMIC database a set of MAPK1 and MAPK3 somatic variants found in cancer tissues carrying missense mutations distributed all over the MAPK1 and MAPK3 sequences. The proteins were expressed as pure recombinant proteins, and their biochemical and biophysical properties have been studied in comparison with the wild type. The missense mutations lead to changes in the tertiary arrangements of all the variants. The thermodynamic stability of the wild type and variants has been investigated in the non-phosphorylated and in the phosphorylated form. Significant differences in the thermal stabilities of most of the variants have been observed, as well as changes in the catalytic efficiencies. The energetics of the catalytic reaction is affected for all the variants for both the MAPK proteins. The stability changes and the variation in the enzyme catalysis observed for most of MAPK1/3 variants suggest that a local change in a residue, distant from the catalytic site, may have long-distance effects that reflect globally on enzyme stability and functions.
Asunto(s)
Mutación Missense , Neoplasias , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación Missense/genética , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de SeñalRESUMEN
Cystathionine beta-synthase (CBS) is a pivotal enzyme of the transsulfuration pathway responsible for diverting homocysteine to the biosynthesis of cysteine and production of hydrogen sulfide (H2S). Aberrant upregulation of CBS and overproduction of H2S contribute to pathophysiology of several diseases including cancer and Down syndrome. Therefore, pharmacological CBS inhibition has emerged as a prospective therapeutic approach. Here, we characterized binding and inhibitory mechanism of aminooxyacetic acid (AOAA), the most commonly used CBS inhibitor. We found that AOAA binds CBS tighter than its respective substrates and forms a dead-end PLP-bound intermediate featuring an oxime bond. Surprisingly, serine, but not cysteine, replaced AOAA from CBS and formed an aminoacrylate reaction intermediate, which allowed for the continuation of the catalytic cycle. Indeed, serine rescued and essentially normalized the enzymatic activity of AOAA-inhibited CBS. Cellular studies confirmed that AOAA decreased H2S production and bioenergetics, while additional serine rescued CBS activity, H2S production and mitochondrial function. The crystal structure of AOAA-bound human CBS showed a lack of hydrogen bonding with residues G305 and Y308, found in the serine-bound model. Thus, AOAA-inhibited CBS could be reactivated by serine. This difference may be important in a cellular environment in multiple pathophysiological conditions and may modulate the CBS-inhibitory activity of AOAA. In addition, our results demonstrate additional complexities of using AOAA as a CBS-specific inhibitor of H2S biogenesis and point to the urgent need to develop a potent, selective and specific pharmacological CBS inhibitor.
Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Ácido Aminooxiacético/farmacología , Cistationina betasintasa/metabolismo , Cisteína , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , SerinaRESUMEN
Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine ß-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 µM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.
Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Catequina/análogos & derivados , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Fosfatos , Piridoxal , Relación Estructura-ActividadRESUMEN
Large scale genome sequencing allowed the identification of a massive number of genetic variations, whose impact on human health is still unknown. In this review we analyze, by an in silico-based strategy, the impact of missense variants on cancer-related genes, whose effect on protein stability and function was experimentally determined. We collected a set of 164 variants from 11 proteins to analyze the impact of missense mutations at structural and functional levels, and to assess the performance of state-of-the-art methods (FoldX and Meta-SNP) for predicting protein stability change and pathogenicity. The result of our analysis shows that a combination of experimental data on protein stability and in silico pathogenicity predictions allowed the identification of a subset of variants with a high probability of having a deleterious phenotypic effect, as confirmed by the significant enrichment of the subset in variants annotated in the COSMIC database as putative cancer-driving variants. Our analysis suggests that the integration of experimental and computational approaches may contribute to evaluate the risk for complex disorders and develop more effective treatment strategies.
Asunto(s)
Mutación Missense/genética , Neoplasias/genética , Biología Computacional/métodos , Simulación por Computador , Humanos , Estabilidad Proteica , Proteínas/genéticaRESUMEN
Bromodomains (BRDs) are small protein interaction modules of about 110 amino acids that selectively recognize acetylated lysine in histones and other proteins. These domains have been identified in a variety of multi-domain proteins involved in transcriptional regulation or chromatin remodeling in eukaryotic cells. BRD inhibition is considered an attractive therapeutic approach in epigenetic disorders, particularly in oncology. Here, we present a Φ value analysis to investigate the folding pathway of the second domain of BRD2 (BRD2(2)). Using an extensive mutational analysis based on 25 site-directed mutants, we provide structural information on both the intermediate and late transition state of BRD2(2). The data reveal that the C-terminal region represents part of the initial folding nucleus, while the N-terminal region of the domain consolidates its structure only later in the folding process. Furthermore, only a small number of native-like interactions have been identified, suggesting the presence of a non-compact, partially folded state with scarce native-like characteristics. Taken together, these results indicate that, in BRD2(2), a hierarchical mechanism of protein folding can be described with non-native interactions that play a significant role in folding.
Asunto(s)
Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Factores de Transcripción/química , Cinética , Dominios Proteicos , Estructura Terciaria de ProteínaRESUMEN
Human frataxin is an iron-binding protein involved in the mitochondrial iron-sulfur (Fe-S) clusters assembly, a process fundamental for the functional activity of mitochondrial proteins. Decreased level of frataxin expression is associated with the neurodegenerative disease Friedreich ataxia. Defective function of frataxin may cause defects in mitochondria, leading to increased tumorigenesis. Tumor-initiating cells show higher iron uptake, a decrease in iron storage and a reduced Fe-S clusters synthesis and utilization. In this study, we selected, from COSMIC database, the somatic human frataxin missense variants found in cancer tissues p.D104G, p.A107V, p.F109L, p.Y123S, p.S161I, p.W173C, p.S181F, and p.S202F to analyze the effect of the single amino acid substitutions on frataxin structure, function, and stability. The spectral properties, the thermodynamic and the kinetic stability, as well as the molecular dynamics of the frataxin missense variants found in cancer tissues point to local changes confined to the environment of the mutated residues. The global fold of the variants is not altered by the amino acid substitutions; however, some of the variants show a decreased stability and a decreased functional activity in comparison with that of the wild-type protein.
Asunto(s)
Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Mutación Missense , Neoplasias/genética , Sustitución de Aminoácidos , Bases de Datos Genéticas , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estabilidad Proteica , FrataxinaRESUMEN
Frataxin (FXN) is a highly conserved protein found in prokaryotes and eukaryotes that is required for efficient regulation of cellular iron homeostasis. Experimental evidence associates amino acid substitutions of the FXN to Friedreich Ataxia, a neurodegenerative disorder. Recently, new thermodynamic experiments have been performed to study the impact of somatic variations identified in cancer tissues on protein stability. The Critical Assessment of Genome Interpretation (CAGI) data provider at the University of Rome measured the unfolding free energy of a set of variants (FXN challenge data set) with far-UV circular dichroism and intrinsic fluorescence spectra. These values have been used to calculate the change in unfolding free energy between the variant and wild-type proteins at zero concentration of denaturant (ΔΔGH2O) . The FXN challenge data set, composed of eight amino acid substitutions, was used to evaluate the performance of the current computational methods for predicting the ΔΔGH2O value associated with the variants and to classify them as destabilizing and not destabilizing. For the fifth edition of CAGI, six independent research groups from Asia, Australia, Europe, and North America submitted 12 sets of predictions from different approaches. In this paper, we report the results of our assessment and discuss the limitations of the tested algorithms.
Asunto(s)
Sustitución de Aminoácidos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Algoritmos , Dicroismo Circular , Humanos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , FrataxinaRESUMEN
Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning.
Asunto(s)
PPAR gamma/química , PPAR gamma/genética , Polimorfismo de Nucleótido Simple , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Dicroismo Circular , Humanos , Ligandos , Simulación de Dinámica Molecular , PPAR gamma/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Desplegamiento Proteico/efectos de los fármacos , Relación Estructura-Actividad , Termodinámica , Transcripción Genética , Urea/farmacologíaRESUMEN
The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.
Asunto(s)
Dominio Catalítico , Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/química , Cristalografía por Rayos X , Especificidad por Sustrato , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , CatálisisRESUMEN
The extracellular-signal-regulated kinase 2 (ERK2), a mitogen-activated protein kinase (MAPK) located downstream of the Ras-Raf-MEK-ERK signal transduction cascade, is involved in the regulation of a large variety of cellular processes. The ERK2, activated by phosphorylation, is the principal effector of a central signaling cascade that converts extracellular stimuli into cells. Deregulation of the ERK2 signaling pathway is related to many human diseases, including cancer. This study reports a comprehensive biophysical analysis of structural, function, and stability data of pure, recombinant human non-phosphorylated (NP-) and phosphorylated (P-) ERK2 wild-type and missense variants in the common docking site (CD-site) found in cancer tissues. Because the CD-site is involved in interaction with protein substrates and regulators, a biophysical characterization of missense variants adds information about the impact of point mutations on the ERK2 structure-function relationship. Most of the P-ERK2 variants in the CD-site display a reduced catalytic efficiency, and for the P-ERK2 D321E, D321N, D321V and E322K, changes in thermodynamic stability are observed. The thermal stability of NP-ERK2 and P-ERK2 D321E, D321G, and E322K is decreased with respect to the wild-type. In general, a single residue mutation in the CD-site may lead to structural local changes that reflects in alterations in the global ERK2 stability and catalysis.
RESUMEN
Cystathionine ß-synthase (CBS), CSE (cystathionine γ-lyase) and 3-mercaptopyruvate sulfurtransferase (3-MST) have emerged as three significant sources of hydrogen sulfide (H2S) in various forms of mammalian cancer. Here, we investigated the functional role of CBS' and 3-MST's catalytic activity in the murine breast cancer cell line EO771. The CBS/CSE inhibitor aminooxyacetic acid (AOAA) and the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) were used to assess the role of endogenous H2S in the modulation of breast cancer cell proliferation, migration, bioenergetics and viability in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). CBS and 3-MST, as well as expression were detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that EO771 cells express CBS, CSE and 3-MST protein, as well as several enzymes involved in H2S degradation (SQR, TST, and ETHE1). Pharmacological inhibition of CBS or 3-MST inhibited H2S production, suppressed cellular bioenergetics and attenuated cell proliferation. Cell migration was only inhibited by the 3-MST inhibitor, but not the CBS/CSE inhibitor. Inhibition of CBS/CSE of 3-MST did not significantly affect basal cell viability; inhibition of 3-MST (but not of CBS/CSE) slightly enhanced the cytotoxic effects of oxidative stress (hydrogen peroxide challenge). From these findings, we conclude that endogenous H2S, generated by 3-MST and to a lower degree by CBS/CSE, significantly contributes to the maintenance of bioenergetics, proliferation and migration in murine breast cancer cells and may also exert a minor role as a cytoprotectant.
RESUMEN
Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.
RESUMEN
H2S is generated in the adipose tissue by cystathionine γ-lyase, cystathionine ß-synthase, and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S plays multiple roles in the regulation of various metabolic processes, including insulin resistance. H2S biosynthesis also occurs in adipocytes. Aging is known to be associated with a decline in H2S. Therefore, the question arises whether endogenous H2S deficiency may affect the process of adipocyte maturation and lipid accumulation. Among the three H2S-generating enzymes, the role of 3-MST is the least understood in adipocytes. Here we tested the effect of the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) and the H2S donor (GYY4137) on the differentiation and adipogenesis of the adipocyte-like cells 3T3-L1 in vitro. 3T3-L1 cells were differentiated into mature adipocytes in the presence of GYY4137 or HMPSNE. HMPSNE significantly enhanced lipid accumulation into the maturing adipocytes. On the other hand, suppressed lipid accumulation was observed in cells treated with the H2S donor. 3-MST inhibition increased, while H2S donation suppressed the expression of various H2S-producing enzymes during adipocyte differentiation. 3-MST knockdown also facilitated adipocytic differentiation and lipid uptake. The underlying mechanisms may involve impairment of oxidative phosphorylation and fatty acid oxidation as well as the activation of various differentiation-associated transcription factors. Thus, the 3-MST/H2S system plays a tonic role in suppressing lipid accumulation and limiting the differentiation of adipocytes. Stimulation of 3-MST activity or supplementation of H2S-which has been recently linked to various experimental therapeutic approaches during aging-may be a potential experimental approach to counteract adipogenesis.
Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Sulfurtransferasas/metabolismo , LípidosRESUMEN
We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys15 ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter.
Asunto(s)
Antígenos CD/metabolismo , SARS-CoV-2/química , Proteínas Virales/metabolismo , Zinc/metabolismo , Cisteína/química , Proteínas Ligadas a GPI/metabolismo , Histidina/química , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Espectroscopía de Absorción de Rayos XRESUMEN
Bacteria can not only encounter carbon monoxide (CO) in their habitats but also produce the gas endogenously. Bacterial respiratory oxidases, thus, represent possible targets for CO. Accordingly, host macrophages were proposed to produce CO and release it into the surrounding microenvironment to sense viable bacteria through a mechanism that in Escherichia (E.) coli was suggested to involve the targeting of a bd-type respiratory oxidase by CO. The aerobic respiratory chain of E. coli possesses three terminal quinol:O2-oxidoreductases: the heme-copper oxidase bo3 and two copper-lacking bd-type oxidases, bd-I and bd-II. Heme-copper and bd-type oxidases differ in the mechanism and efficiency of proton motive force generation and in resistance to oxidative and nitrosative stress, cyanide and hydrogen sulfide. Here, we investigated at varied O2 concentrations the effect of CO gas on the O2 reductase activity of the purified cytochromes bo3, bd-I and bd-II of E. coli. We found that CO, in competition with O2, reversibly inhibits the three enzymes. The inhibition constants Ki for the bo3, bd-I and bd-II oxidases are 2.4⯱â¯0.3, 0.04⯱â¯0.01 and 0.2⯱â¯0.1⯵M CO, respectively. Thus, in E. coli, bd-type oxidases are more sensitive to CO inhibition than the heme-copper cytochrome bo3. The possible physiological consequences of this finding are discussed.
Asunto(s)
Monóxido de Carbono/metabolismo , Grupo Citocromo b/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , Transporte de Electrón/fisiología , Escherichia coli , Oxígeno/metabolismo , Análisis EspectralRESUMEN
Cancer cells are able to survive in difficult conditions, reprogramming their metabolism according to their requirements. Under hypoxic conditions they shift from oxidative phosphorylation to aerobic glycolysis, a behavior known as Warburg effect. In the last years, glycolytic enzymes have been identified as potential targets for alternative anticancer therapies. Recently, phosphoglycerate kinase 1 (PGK1), an ubiquitous enzyme expressed in all somatic cells that catalyzes the seventh step of glycolysis which consists of the reversible phosphotransfer reaction from 1,3-bisphosphoglycerate to ADP, has been discovered to be overexpressed in many cancer types. Moreover, several somatic variants of PGK1 have been identified in tumors. In this study we analyzed the effect of the single nucleotide variants found in cancer tissues on the PGK1 structure and function. Our results clearly show that the variants display a decreased catalytic efficiency and/or thermodynamic stability and an altered local tertiary structure, as shown by the solved X-ray structures. The changes in the catalytic properties and in the stability of the PGK1 variants, mainly due to the local changes evidenced by the X-ray structures, suggest also changes in the functional role of PGK to support the biosynthetic need of the growing and proliferating tumour cells.
Asunto(s)
Adenosina Difosfato/química , Ácidos Glicéricos/química , Proteínas de Neoplasias/química , Fosfoglicerato Quinasa/química , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácidos Glicéricos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , TermodinámicaRESUMEN
Bromodomains (BRDs) are small protein domains often present in large multidomain proteins involved in transcriptional regulation in eukaryotic cells. They currently represent valuable targets for the development of inhibitors of aberrant transcriptional processes in a variety of human diseases. Here we report urea-induced equilibrium unfolding experiments monitored by circular dichroism (CD) and fluorescence on two structurally similar BRDs: BRD2(2) and BRD4(1), showing that BRD4(1) is more stable than BRD2(2). Moreover, we report a description of their kinetic folding mechanism, as obtained by careful analysis of stopped-flow and temperature-jump data. The presence of a high energy intermediate for both proteins, suggested by the non-linear dependence of the folding rate on denaturant concentration in the millisec time regime, has been experimentally observed by temperature-jump experiments. Quantitative global analysis of all the rate constants obtained over a wide range of urea concentrations, allowed us to propose a common, three-state, folding mechanism for these two BRDs. Interestingly, the intermediate of BRD4(1) appears to be more stable and structurally native-like than that populated by BRD2(2). Our results underscore the role played by structural topology and sequence in determining and tuning the folding mechanism.
RESUMEN
Three PEGylated ß-sheet breaker peptides are designed as new inhibitors of ß-amyloid fibrillization. The peptide Ac-Leu-Pro-Phe-Phe-Asp-NH2 , considered the lead compound, and hexamers in which taurine and ß-alanine substitute the acetyl group, are conjugated to poly(ethylene glycol); this conjugates self-assemble into nanoparticles. The activity of the PEGylated peptides as inhibitors of amyloid fibrillization are tested inâ vitro using circular dichroism spectroscopy and scanning electron microscopy. The experimental results indicate that PEGylation does not impair the ability of the ß-sheet breaker peptides to inhibit fibrillogenesis in vitro. Moreover, microscopy images of ß-amyloid incubated for 6â days with the taurine-containing peptide, suggest that this conjugate has major anti-fibrillogenesis activity and demonstrate the important role of the sulfonamide function against the amyloid aggregation.
RESUMEN
Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding.