Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Retrovirology ; 15(1): 39, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792216

RESUMEN

BACKGROUND: HIV-1 transcription activator protein Tat is phosphorylated in vitro by CDK2 and DNA-PK on Ser-16 residue and by PKR on Tat Ser-46 residue. Here we analyzed Tat phosphorylation in cultured cells and its functionality. RESULTS: Mass spectrometry analysis showed primarily Tat Ser-16 phosphorylation in cultured cells. In vitro, CDK2/cyclin E predominantly phosphorylated Tat Ser-16 and PKR-Tat Ser-46. Alanine mutations of either Ser-16 or Ser-46 decreased overall Tat phosphorylation. Phosphorylation of Tat Ser-16 was reduced in cultured cells treated by a small molecule inhibitor of CDK2 and, to a lesser extent, an inhibitor of DNA-PK. Conditional knock-downs of CDK2 and PKR inhibited and induced one round HIV-1 replication respectively. HIV-1 proviral transcription was inhibited by Tat alanine mutants and partially restored by S16E mutation. Pseudotyped HIV-1 with Tat S16E mutation replicated well, and HIV-1 Tat S46E-poorly, but no live viruses were obtained with Tat S16A or Tat S46A mutations. TAR RNA binding was affected by Tat Ser-16 alanine mutation. Binding to cyclin T1 showed decreased binding of all Ser-16 and Ser-46 Tat mutants with S16D and Tat S46D mutationts showing the strongest effect. Molecular modelling and molecular dynamic analysis revealed significant structural changes in Tat/CDK9/cyclin T1 complex with phosphorylated Ser-16 residue, but not with phosphorylated Ser-46 residue. CONCLUSION: Phosphorylation of Tat Ser-16 induces HIV-1 transcription, facilitates binding to TAR RNA and rearranges CDK9/cyclin T1/Tat complex. Thus, phosphorylation of Tat Ser-16 regulates HIV-1 transcription and may serve as target for HIV-1 therapeutics.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Serina/metabolismo , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Ciclina T/química , Ciclina T/genética , Ciclina T/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/química , Quinasa 9 Dependiente de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Infecciones por VIH/genética , Interacciones Huésped-Patógeno , Humanos , Modelos Biológicos , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , ARN Viral , Ubiquitinación , Replicación Viral , eIF-2 Quinasa/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
2.
Retrovirology ; 9: 94, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23140174

RESUMEN

BACKGROUND: HIV-1 transcription is activated by the viral Tat protein that recruits host positive transcription elongation factor-b (P-TEFb) containing CDK9/cyclin T1 to the HIV-1 promoter. P-TEFb in the cells exists as a lower molecular weight CDK9/cyclin T1 dimer and a high molecular weight complex of 7SK RNA, CDK9/cyclin T1, HEXIM1 dimer and several additional proteins. Our previous studies implicated CDK2 in HIV-1 transcription regulation. We also found that inhibition of CDK2 by iron chelators leads to the inhibition of CDK9 activity, suggesting a functional link between CDK2 and CDK9. Here, we investigate whether CDK2 phosphorylates CDK9 and regulates its activity. RESULTS: The siRNA-mediated knockdown of CDK2 inhibited CDK9 kinase activity and reduced CDK9 phosphorylation. Stable shRNA-mediated CDK2 knockdown inhibited HIV-1 transcription, but also increased the overall level of 7SK RNA. CDK9 contains a motif (90SPYNR94) that is consensus CDK2 phosphorylation site. CDK9 was phosphorylated on Ser90 by CDK2 in vitro. In cultured cells, CDK9 phosphorylation was reduced when Ser90 was mutated to an Ala. Phosphorylation of CDK9 on Ser90 was also detected with phospho-specific antibodies and it was reduced after the knockdown of CDK2. CDK9 expression decreased in the large complex for the CDK9-S90A mutant and was correlated with a reduced activity and an inhibition of HIV-1 transcription. In contrast, the CDK9-S90D mutant showed a slight decrease in CDK9 expression in both the large and small complexes but induced Tat-dependent HIV-1 transcription. Molecular modeling showed that Ser 90 of CDK9 is located on a flexible loop exposed to solvent, suggesting its availability for phosphorylation. CONCLUSION: Our data indicate that CDK2 phosphorylates CDK9 on Ser 90 and thereby contributes to HIV-1 transcription. The phosphorylation of Ser90 by CDK2 represents a novel mechanism of HIV-1 regulated transcription and provides a new strategy for activation of latent HIV-1 provirus.


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/genética , Transcripción Genética , Línea Celular , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/química , Activación Enzimática/genética , Silenciador del Gen , Humanos , Modelos Moleculares , Mutación , Fosforilación , Factor B de Elongación Transcripcional Positiva/metabolismo , Unión Proteica , Conformación Proteica , Interferencia de ARN , ARN Viral/genética , ARN Viral/metabolismo , Serina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA