Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 19(1): 503-510, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31738564

RESUMEN

Mass spectrometry (MS) offers high levels of specificity and sensitivity in clinical applications, and we have previously been able to demonstrate that matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS is capable of distinguishing two-component cell mixtures at low limits of detection. Ovarian cancer is notoriously difficult to detect due to the lack of diagnostic techniques available to the medical community. By sampling a local microenvironment, such as the vaginal canal and cervix, a MS based method is presented for monitoring disease progression from proximal samples to the diseased tissue. A murine xenograft model of high grade serous ovarian carcinoma (HGSOC) was used for this study, and vaginal lavages were obtained from mice on a weekly basis throughout disease progression and subjected to our MALDI-TOF MS workflow followed by statistical analyses. Proteins in the 4-20 kDa region of the mass spectrum yielded a fingerprint that we could consistently measure over time that correlated with disease progression. These fingerprints were found to be largely stable across all mice, with the protein fingerprint converging toward the end point of the study. MALDI-TOF MS serves as a unique analytical technique for measuring a sampled vaginal microenvironment in a specific and sensitive manner for the detection of HGSOC in a murine model.


Asunto(s)
Neoplasias Ováricas/diagnóstico , Proteínas/análisis , Vagina/metabolismo , Animales , Línea Celular Tumoral , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Ratones Desnudos , Neoplasias Ováricas/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Irrigación Terapéutica , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nat Commun ; 14(1): 3737, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349300

RESUMEN

Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.


Asunto(s)
Esquistosomiasis , Esquistosomicidas , Animales , Ratones , Esquistosomicidas/farmacología , Esquistosomicidas/uso terapéutico , Praziquantel/farmacología , Schistosoma , NADH NADPH Oxidorreductasas/farmacología , NADH NADPH Oxidorreductasas/uso terapéutico , Schistosoma mansoni
3.
J Am Soc Mass Spectrom ; 30(2): 344-354, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30353292

RESUMEN

MALDI fingerprinting was first described two decades ago as a technique to identify microbial cell lines. Microbial fingerprinting has since evolved into an automated platform for microorganism identification and classification, which is now routinely used in clinical and environmental sectors. The extension of fingerprinting to mammalian cells has yet to progress partly due to compartmentalization of eukaryotic cells and overall higher cellular complexity. A number of publications on mammalian whole cell fingerprinting suggest that the method could be useful for classification of different cell types, cell states, and monitoring cell differentiation. We report the optimization of MALDI fingerprinting workflow parameters for mammalian cells and its application for differential profiling of mammalian cell lines and two-component cell line mixtures. Murine fallopian tube cells and high-grade ovarian carcinoma cell lines and their mixtures are used as model mammalian cell lines. Two-component cell mixtures serve to determine the method's feasibility for complex biological samples as the ability to detect cancer cells in a mixed cell population. The level of detection of cancer cells in the two-component mixture by principle component analysis (PCA) starts to deteriorate at 5% but with application of a different statistical approach, Wilcoxon rank sum test, the level of detection was determined to be 1%. The ability to differentiate heterogeneous cell mixtures will help further extend whole cell MALDI fingerprinting to complex biological systems. Graphical Abstract.


Asunto(s)
Citodiagnóstico/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Línea Celular Tumoral , Células Cultivadas , Trompas Uterinas/citología , Femenino , Humanos , Ratones , Reproducibilidad de los Resultados , Solventes , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA