Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mass Spectrom ; 59(4): e5006, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501497

RESUMEN

Space charge effects are the Achilles' heel of all high-resolution ion optical devices. In time-of-flight mass analyzers, these may manifest as reduction of resolving power, mass measurement shift, peak coalescence, and/or transmission losses, while highly sensitive modern ion sources and injection devices ensure that such limits are easily exceeded. Space charge effects have been investigated, by experiment and simulation study, for the astral multi-reflection analyzer, incorporating ion focusing via a pair of converging ion mirrors, and fed by a pulsed extraction ion trap. Major factors were identified as the resonant effect between ~103 ions of similar m/z in-flight and the expansion of trapped packets of ~104-5 ions prior to extraction. Optimum operation and compensated ion mirror calibration strategies were then generated and described based on these findings.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39096288

RESUMEN

Reflectron-based time-of-flight analyzers rely on subnanosecond detector time response to achieve acceptable resolving power for low-mid-mass, multiple-ion peaks. With the adoption of multireflection analyzers, order of magnitude longer folded ion paths relax restrictions on detector response time, allowing implementation of new technologies that greatly improve dynamic range, detector lifetime, and ion detection efficiency. A detection system is presented, integrated into a multireflection analyzer, that combines 10 keV postacceleration and focal plane correction with a unique BxE focusing, optically coupled detector, preamplification, and dual-channel digitization. Calibration and peak-handling methods are also described. The instrument demonstrated >1 × 104 dynamic range in a single shot, > 100k resolving power, and a relative immunity to detector aging.

3.
Nat Biotechnol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302753

RESUMEN

Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA