Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 46(5): 573-83, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22560721

RESUMEN

Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax, which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly, active Bax was maintained at the Golgi rather than at the mitochondria, thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage, active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly, upon differentiation, Bax was no longer active, and cells were not acutely sensitive to DNA damage. Thus, maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death, likely to prevent the propagation of mutations during the early critical stages of embryonic development.


Asunto(s)
Apoptosis , Células Madre Embrionarias/metabolismo , Aparato de Golgi/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Acetilación , Antígenos Nucleares/metabolismo , Transporte Biológico , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Silenciador del Gen , Genes bcl-2 , Humanos , Autoantígeno Ku , Mitocondrias/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Proteína X Asociada a bcl-2/análisis
2.
Development ; 142(11): 2037-47, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25953344

RESUMEN

Organ growth occurs through the integration of external growth signals during the G1 phase of the cell cycle to initiate DNA replication. Although numerous growth factor signals have been shown to be required for the proliferation of cardiomyocytes, genetic studies have only identified a very limited number of transcription factors that act to regulate the entry of cardiomyocytes into S phase. Here, we report that the cardiac para-zinc-finger protein CASZ1 is expressed in murine cardiomyocytes. Genetic fate mapping with an inducible Casz1 allele demonstrates that CASZ1-expressing cells give rise to cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to a decrease in cardiomyocyte cell number. We further report that the loss of Casz1 leads to a prolonged or arrested S phase, a decrease in DNA synthesis, an increase in phospho-RB and a concomitant decrease in the cardiac mitotic index. Taken together, these studies establish a role for CASZ1 in mammalian cardiomyocyte cell cycle progression in both the first and second heart fields.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fase G1 , Corazón/embriología , Mamíferos/embriología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fase S , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Embrión de Mamíferos/metabolismo , Femenino , Integrasas/metabolismo , Masculino , Ratones , Miocardio/citología , Miocardio/metabolismo , Miocardio/ultraestructura
3.
Proc Natl Acad Sci U S A ; 111(7): 2596-601, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550288

RESUMEN

Reaction-diffusion models have been used as a paradigm for describing the de novo emergence of biological patterns such as stripes and spots. In many organisms, these initial patterns are typically refined and elaborated over the subsequent course of development. Here we study the formation of secondary hair follicle patterns in the skin of developing mouse embryos. We used the expression of sex-determining region Y box 2 to identify and distinguish the primary and secondary hair follicles and to infer the spatiotemporal dynamics of the follicle formation process. Quantitative analysis of the specific follicle patterns observed reveals a simple geometrical rule governing the formation of secondary follicles, and motivates an expansion-induction (EI) model in which new follicle formation is driven by the physical growth of the embryo. The EI model requires only one diffusible morphogen and provides quantitative, accurate predictions on the relative positions and timing of secondary follicle formation, using only the observed configuration of primary follicles as input. The same model accurately describes the positions of additional follicles that emerge from skin explants treated with an activator. Thus, the EI model provides a simple and robust mechanism for predicting secondary space-filling patterns in growing embryos.


Asunto(s)
Folículo Piloso/embriología , Modelos Biológicos , Morfogénesis/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Proteínas Portadoras/metabolismo , Simulación por Computador , Galactósidos , Técnicas Histológicas , Indoles , Ratones
4.
Development ; 140(7): 1445-56, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462474

RESUMEN

Within discrete regions of the developing mammalian central nervous system, small subsets of glia become specialized to function as neural stem cells. As a result of their self-renewal and neurogenic capacity, these cells later serve to replenish neurons and glia during persistent or injury-induced adult neurogenesis. SOX2, an HMG box transcription factor, plays an essential role in the maintenance of both embryonic and adult neural progenitors. It is unclear, however, which biological mechanisms regulated by SOX2 are required for neural stem cell maintenance. In this study, we address this question through genetic analysis of SOX2 function in differentiating postnatal Müller glia, a cell type that maintains neurogenic capacity in the adult retina. By utilizing molecular analysis and real-time imaging, we show that two progenitor characteristics of nascent Müller glia - their radial morphology and cell cycle quiescence - are disrupted following conditional genetic ablation of Sox2 in the mouse postnatal retina, leading to Müller cell depletion and retinal degeneration. Moreover, we demonstrate that genetic induction of the Notch signaling pathway restores Müller glial cell identity to Sox2 mutant cells, but does not secure their quiescent state. Collectively, these results uncouple the roles of SOX2 and the Notch signaling pathway in the postnatal retina, and uncover a novel role for SOX2 in preventing the depletion of postnatal Müller glia through terminal cell division.


Asunto(s)
Neuroglía/fisiología , Retina/citología , Factores de Transcripción SOXB1/fisiología , Células Madre/fisiología , Animales , Animales Recién Nacidos , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/metabolismo , Retina/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Células Madre/metabolismo
5.
PLoS Genet ; 9(11): e1003957, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244203

RESUMEN

Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES) cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM) in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ~E6.0-E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ~E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ~E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Desarrollo Embrionario , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Ratones , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Factor 3 de Transcripción de Unión a Octámeros/antagonistas & inhibidores , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Línea Primitiva/crecimiento & desarrollo , Línea Primitiva/metabolismo , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 306(7): L645-60, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24487391

RESUMEN

Tracheobronchial submucosal glands (SMGs) are derived from one or more multipotent glandular stem cells that coalesce to form a placode in surface airway epithelium (SAE). Wnt/ß-catenin-dependent induction of lymphoid enhancer factor (Lef-1) gene expression during placode formation is an early event required for SMG morphogenesis. We discovered that Sox2 expression is repressed as Lef-1 is induced within airway SMG placodes. Deletion of Lef-1 did not activate Sox2 expression in SMG placodes, demonstrating that Lef-1 activation does not directly inhibit Sox2 expression. Repression of Sox2 protein in SMG placodes occurred posttranscriptionally, since the activity of its endogenous promoter remained unchanged in SMG placodes. Thus we hypothesized that Sox2 transcriptionally represses Lef-1 expression in the SAE and that suppression of Sox2 in SMG placodes activates Wnt/ß-catenin-dependent induction of Lef-1 during SMG morphogenesis. Consistent with this hypothesis, transcriptional reporter assays, ChIP analyses, and DNA-protein binding studies revealed a functional Sox2 DNA binding site in the Lef-1 promoter that is required for suppressing ß-catenin-dependent transcription. In polarized primary airway epithelium, Wnt induction enhanced Lef-1 expression while also inhibiting Sox2 expression. Conditional deletion of Sox2 also enhanced Lef-1 expression in polarized primary airway epithelium, but this induction was significantly augmented by Wnt stimulation. Our findings provide the first evidence that Sox2 acts as a repressor to directly modulate Wnt-responsive transcription of the Lef-1 gene promoter. These studies support a model whereby Wnt signals and Sox2 dynamically regulate the expression of Lef-1 in airway epithelia and potentially also during SMG development.


Asunto(s)
Factor de Unión 1 al Potenciador Linfoide/biosíntesis , Sistema Respiratorio/crecimiento & desarrollo , Factores de Transcripción SOXB1/fisiología , Lesión Pulmonar Aguda/fisiopatología , Animales , Animales Recién Nacidos , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/fisiología , Proteínas Wnt/fisiología , beta Catenina/fisiología
7.
Development ; 138(3): 443-54, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205789

RESUMEN

In humans, haploinsufficiency of either SOX2 or PAX6 is associated with microphthalmia, anophthalmia or aniridia. In this study, through the genetic spatiotemporal specific ablation of SOX2 on both wild-type and Pax6-haploinsufficent backgrounds in the mouse, we have uncovered a transcriptionally distinct and developmentally transient stage of eye development. We show that genetic ablation of SOX2 in the optic cup results in complete loss of neural competence and eventual cell fate conversion to non-neurogenic ciliary epithelium. This cell fate conversion is associated with a striking increase in PAX6, and genetically ablating SOX2 on a Pax6-haploinsufficient background partially rescues the Sox2-mutant phenotype. Collectively, these results demonstrate that precise regulation of the ratio of SOX2 to PAX6 is necessary to ensure accurate progenitor cell specification, and place SOX2 as a decisive factor of neural competence in the retina.


Asunto(s)
Cuerpo Ciliar/citología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Retina/citología , Retina/metabolismo , Factores de Transcripción SOXB1/genética
8.
Cleft Palate Craniofac J ; 51(1): 110-4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23638914

RESUMEN

OBJECTIVE: While SEX-determining region Y-Box 2 (SOX2) mutations are typically recognized as yielding ocular and central nervous system abnormalities, they have also been associated with other craniofacial defects. To elucidate the genesis of the latter, Sox2 hypomorphic (Sox2(HYP)) mice were examined, with particular attention to secondary palatal development. RESULTS: Clefts of the secondary palate were found to be highly penetrant in Sox2(HYP) mice. The palatal clefting occurred in the absence of mandibular hypoplasia and resulted from delayed or failed shelf elevation. CONCLUSIONS: Sox2 hypomorphism can result in clefting of the secondary palate, an effect that appears to be independent of mandibular hypoplasia and is thus expected to result from an abnormality that is inherent to the palatal shelves and/or their progenitor tissues. Further clinical attention relative to SOX2 mutations as a basis for secondary palatal clefts appears warranted.


Asunto(s)
Fisura del Paladar/genética , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Alelos , Animales , Modelos Animales de Enfermedad , Genotipo , Ratones
9.
Development ; 137(15): 2471-81, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573694

RESUMEN

Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes - olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 - independent of Pbx co-factors - regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Mucosa Olfatoria/metabolismo , Transcripción Genética , Animales , Ciclo Celular , Proliferación Celular , Electroporación , Femenino , Inmunohistoquímica/métodos , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Mucosa Olfatoria/embriología , Células Madre/citología
10.
Dev Biol ; 352(1): 40-7, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21256837

RESUMEN

The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system.


Asunto(s)
Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factores de Transcripción SOXB1/metabolismo , Telencéfalo/citología , Telencéfalo/embriología , Animales , Biomarcadores/metabolismo , Agregación Celular , Proliferación Celular , Separación Celular , Tamaño de la Célula , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOXB1/genética , Telencéfalo/metabolismo
11.
Acta Neuropathol ; 124(2): 259-71, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22349813

RESUMEN

Activating mutations in the gene encoding ß-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of ß-catenin (ß-cat(nc)) and over-activation of the Wnt/ß-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the ß-cat(nc) cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these ß-cat(nc) cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the ß-cat(nc) cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.


Asunto(s)
Craneofaringioma/genética , Células Madre Neoplásicas , Neoplasias Hipofisarias/genética , beta Catenina/genética , Animales , Células Cultivadas , Craneofaringioma/metabolismo , Craneofaringioma/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Transducción de Señal , Telómero/genética , Telómero/metabolismo , beta Catenina/metabolismo
12.
Neuron ; 54(3): 429-45, 2007 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-17481396

RESUMEN

The cytoskeletal regulators that mediate the change in the neuronal cytoskeletal machinery from one that promotes oriented motility to one that facilitates differentiation at the appropriate locations in the developing neocortex remain unknown. We found that Nck-associated protein 1 (Nap1), an adaptor protein thought to modulate actin nucleation, is selectively expressed in the developing cortical plate, where neurons terminate their migration and initiate laminar-specific differentiation. Loss of Nap1 function disrupts neuronal differentiation. Premature expression of Nap1 in migrating neurons retards migration and promotes postmigratory differentiation. Nap1 gene mutation in mice leads to neural tube and neuronal differentiation defects. Disruption of Nap1 retards the ability to localize key actin cytoskeletal regulators such as WAVE1 to the protrusive edges where they are needed to elaborate process outgrowth. Thus, Nap1 plays an essential role in facilitating neuronal cytoskeletal changes underlying the postmigratory differentiation of cortical neurons, a critical step in functional wiring of the cortex.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/citología , Neuronas/fisiología , Proteínas Oncogénicas/fisiología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Movimiento Celular , Corteza Cerebral/enzimología , Embrión de Mamíferos/ultraestructura , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunoprecipitación , Hibridación in Situ , Ratones , Ratones Mutantes , Microscopía Electrónica de Rastreo/métodos , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Oncogénicas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 105(47): 18396-401, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19011097

RESUMEN

Sox2 is a high-mobility transcription factor that is one of the earliest markers of developing inner ear prosensory domains. In humans, mutations in SOX2 cause sensorineural hearing loss and a loss of function study in mice showed that Sox2 is required for prosensory formation in the cochlea. However, the specific roles of Sox2 have not been determined. Here we illustrate a dynamic role of Sox2 as an early permissive factor in prosensory domain formation followed by a mutually antagonistic relationship with Atoh1, a bHLH protein necessary for hair cell development. We demonstrate that decreased levels of Sox2 result in precocious hair cell differentiation and an over production of inner hair cells and that these effects are likely mediated through an antagonistic interaction between Sox2 and the bHLH molecule Atoh1. Using gain- and loss-of-function experiments we provide evidence for the molecular pathway responsible for the formation of the cochlear prosensory domain. Sox2 expression is promoted by Notch signaling and Prox1, a homeobox transcription factor, is a downstream target of Sox2. These results demonstrate crucial and diverse roles for Sox2 in the development, specification, and maintenance of sensory cells within the cochlea.


Asunto(s)
Diferenciación Celular , Cóclea/citología , Células Ciliadas Auditivas Internas/citología , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Animales , Cóclea/crecimiento & desarrollo , Ratones , Receptores Notch/metabolismo
14.
Neuron ; 49(3): 325-7, 2006 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-16446135

RESUMEN

Somatosensory stimuli are encoded by molecularly and anatomically diverse classes of dorsal root ganglia (DRG) neurons. In this issue of Neuron, three papers demonstrate that the Runx transcription factors, Runx1 and Runx3, respectively regulate the molecular identities and spinal terminations of TrkA+ nociceptive neurons and TrkC+ proprioceptive neurons. These findings emphasize the importance of intrinsic genetic programs in generating the diversity of DRG neurons and specifying the circuits into which they incorporate.


Asunto(s)
Diferenciación Celular/fisiología , Subunidades alfa del Factor de Unión al Sitio Principal/fisiología , Neuronas Aferentes/fisiología , Animales , Neuronas Aferentes/clasificación , Receptor trkA/metabolismo
15.
J Cell Biol ; 162(6): 1149-60, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12963709

RESUMEN

In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon-glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana , Fibras Nerviosas Mielínicas/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Canales de Potasio/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Axones/ultraestructura , Comunicación Celular/genética , Contactina 2 , Marcación de Gen , Ratones , Ratones Noqueados , Microscopía Electrónica , Mutación/genética , Fibras Nerviosas Mielínicas/ultraestructura , Proteínas del Tejido Nervioso/genética , Conducción Nerviosa/genética , Neuroglía/metabolismo , Neuroglía/ultraestructura , Canales de Potasio/genética , Nódulos de Ranvier/ultraestructura , Canales de Potasio de la Superfamilia Shaker
16.
Neuron ; 39(5): 749-65, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12948443

RESUMEN

Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling results in the delamination of neural progenitor cells from the ventricular zone and exit from cell cycle, which is associated with a loss of progenitor markers and the onset of early neuronal differentiation markers. The phenotype elicited by inhibition of SOX2 signaling can be rescued by coexpression of SOX1, providing evidence for redundant SOXB1 function in CNS progenitors. Taken together, these data indicate that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitor cells.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/metabolismo , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Células Madre/fisiología , Animales , Ciclo Celular/fisiología , Sistema Nervioso Central/citología , Embrión de Pollo , Proteínas de Unión al ADN/genética , Drosophila , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB , Inmunohistoquímica , Ratones , Proteínas Nucleares/genética , Fenotipo , Factores de Transcripción SOXB1 , Transducción de Señal/fisiología , Factores de Transcripción
17.
Curr Opin Neurobiol ; 15(1): 7-13, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15721738

RESUMEN

Resident among the highly structured adult nervous system, a few cells, referred to as neural progenitors or stem cells, maintain the ability to self-renew or differentiate. From the time of their specification during neural induction and throughout the building of the nervous system, neural progenitor cells preserve their broad developmental potential and replicative capacity to be able to produce the vast array of neuronal and glial cell types of the mature nervous system as, and when, required. Recently, considerable attention has been focused on identifying the molecular mechanisms responsible for maintaining neural progenitor or stem cell fate throughout ontogeny. The expression of a subset of SOX transcription factors is initiated concomitant with the acquisition of neural progenitor identity and is then maintained in the entire progenitor population of the developing and adult nervous system. Strikingly, studies in the central and peripheral nervous system of chick and mouse have revealed that SOX factors are key regulators of neural progenitor identity, promoting self-renewal in a context-dependent manner by sustaining the undifferentiated state of progenitor cells and maintaining their ability to either proliferate or differentiate.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/genética , Neuronas/fisiología , Células Madre/fisiología , Factores de Transcripción/genética , Animales , Humanos
18.
Trends Neurosci ; 26(7): 351-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12850431

RESUMEN

The numbers, types and locations of stem cells in the nervous system have been the subject of much discussion. This review summarizes data on the types of stem cell present at different stages of development and in the adult brain, and the markers suggested to distinguish between the various possibilities that have been reported. We present evidence that more than one class of stem cell is present in the developing and adult nervous systems, and that it might be possible to distinguish between stem-cell populations and to localize the cell of origin of a particular neurosphere, based on markers that persist in culture and by using universal stem-cell markers prospectively to identify stem cells in vivo.


Asunto(s)
Sistema Nervioso/crecimiento & desarrollo , Células Madre/química , Células Madre/metabolismo , Animales , Biomarcadores , Encéfalo/crecimiento & desarrollo , Sistema Nervioso/embriología , Células Madre/clasificación
19.
Aging Cell ; 4(4): 197-207, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16026334

RESUMEN

The identification of neural stem cells (NSCs) in situ has been prevented by the inability to identify a marker consistently expressed in all adult NSCs and is thus generally accomplished using the in vitro neurosphere-forming assay. The high-mobility group transcription factor Sox2 is expressed in embryonic neural epithelial stem cells; because these cells are thought to give rise to the adult NSC population, we hypothesized that Sox2 may continue to be expressed in adult NSCs. Using Sox2:EGFP transgenic mice, we show that Sox2 is expressed in neurogenic regions along the rostral-caudal axis of the central nervous system throughout life. Furthermore, all neurospheres derived from these neurogenic regions express Sox2, suggesting that Sox2 is indeed expressed in adult NSCs. We demonstrate that NSCs are heterogeneous within the adult brain, with differing capacities for cell production. In vitro, all neurospheres express Sox2, but the expression of markers common to early progenitor cells within individual neurospheres varies; this heterogeneity of NSCs is mirrored in vivo. For example, both glial fibrillary acidic protein and NG2 are expressed within individual neurospheres, but their expression is mutually exclusive; likewise, these two markers show distinct staining patterns within the Sox2+ regions of the brain's neurogenic regions. Thus, we propose that the expression of Sox2 is a unifying characteristic of NSCs in the adult brain, but that not all NSCs maintain the ability to form all neural cell types in vivo.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas HMGB/biosíntesis , Neuronas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/biosíntesis , Factores de Edad , Animales , Encéfalo/citología , Diferenciación Celular/fisiología , Células Cultivadas , ADN Complementario/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas HMGB/genética , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1 , Células Madre/citología , Telomerasa/metabolismo , Factores de Transcripción/genética
20.
Invest Ophthalmol Vis Sci ; 57(3): 1488-99, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27031842

RESUMEN

PURPOSE: Müller glia (MG), the principal glial cells of the vertebrate retina, display quiescent progenitor cell characteristics. They express key progenitor markers, including the high mobility group box transcription factor SOX2 and maintain a progenitor-like morphology. In the embryonic and mature central nervous system, SOX2 maintains neural stem cell identity. However, its function in committed Müller glia has yet to be determined. METHODS: We use inducible, MG-specific genetic ablation of Sox2 in vivo at the peak of MG genesis to analyze its function in the maturation of murine MG and effects on other cells in the retina. Histologic and functional analysis of the Sox2-deficient retinas is conducted at key points in postnatal development. RESULTS: Ablation of Sox2 in the postnatal retina results in disorganization of MG processes in the inner plexiform layer and mislocalized cell bodies in the nuclear layers. This disorganization is concurrent with a thinning of the neural retina and disruption of neuronal processes in the inner and outer plexiform layers. Functional analysis by electroretinography reveals a decrease in the b-wave amplitude. Disruption of MG maturation due to Sox2 ablation therefore negatively affected the function of the retina. CONCLUSIONS: These results demonstrate a novel role for SOX2 in glial process outgrowth and adhesion, and provide new insights into the essential role Müller glia play in the development of retinal cytoarchitecture. Prior to this work, SOX2 was known to have a primary role in determining cell fate. Our experiments bypass cell fate conversion to establish a new role for SOX2 in a committed cell lineage.


Asunto(s)
Envejecimiento/genética , Células Ependimogliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuroglía/metabolismo , ARN/genética , Retina/fisiología , Factores de Transcripción SOXB1/genética , Animales , Diferenciación Celular , Proliferación Celular , Electrorretinografía , Células Ependimogliales/ultraestructura , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Electrónica , Neuroglía/ultraestructura , Retina/ultraestructura , Factores de Transcripción SOXB1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA