Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biotechnol Bioeng ; 118(8): 3069-3075, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33988851

RESUMEN

Recombinant bispecific antibodies (bsAbs) are increasingly included in regimens for cancer therapy. Strict good manufacturing practice (GMP) compliant quality control measures are required to ensure quality and safety of these innovative biologicals. Gel electrophoresis (sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]) and size exclusion chromatography (SEC) are the cornerstones of quality control methods. BsAbs are often prone to aggregation or incomplete synthesis due to their artificial nature. In addition, host cell proteins and host cell DNA as well as impurities from the purification process itself constitute potential contaminants. Such impurities may then appear as additional, unexpected bands or peaks on SDS-PAGE gels and SEC, respectively. Here we describe a standardized protocol for rapid analysis of recombinant antibodies by mass spectrometry (MS) after tryptic digestion of bands excised from SDS-PAGE gels. We have used this protocol to characterize unexpected "contaminating bands" that were observed during the clinical development of a novel bsAb with PSMAxCD3 specificity, either during the production of the protein itself or during the development of a surrogate molecule for evaluation in syngeneic mouse models. MS analysis allowed us to precisely determine the origin of these bands, which resulted from artifacts or from incomplete protein synthesis. The combined utilization of SDS-PAGE und MS can therefore substantially support GMP-compliant production of recombinant proteins.


Asunto(s)
Anticuerpos Biespecíficos/química , Antineoplásicos Inmunológicos/química , Electroforesis en Gel de Poliacrilamida , Proteolisis , Animales , Células CHO , Cricetulus , Humanos , Proteínas Recombinantes/química
2.
Front Oncol ; 14: 1351901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410109

RESUMEN

Introduction: Colorectal cancer (CRC) is the third most common cancer worldwide in men and women. In the metastasized stage, treatment options and prognosis are limited. To address the high medical need of this patient population, we generated a CD276xCD3 bispecific antibody termed CC-3. CD276 is expressed on CRC cells and on tumor vessels, thereby allowing for a "dual" anticancer effect. Methods and analysis: This first-in-human clinical study is planned as a prospective multicenter trial, enrolling patients with metastatic CRC after three lines of therapy. During the dose-escalation part, initially, an accelerated titration design with single-patient cohorts is employed. Here, each patient will receive a fixed dose level (starting with 50 µg for the first patient); however, between patients, dose level may be increased by up to 100%, depending on the decision of a safety review committee. Upon occurrence of any adverse events (AEs) grade ≥2, dose-limiting toxicity (DLT), or reaching a dose level of ≥800 µg, the escalation will switch to a standard 3 + 3 dose design. After maximum tolerated dose (MTD) has been determined, defined as no more than one of the six patients experiencing DLT, an additional 14 patients receive CC-3 at the MTD level in the dose-expansion phase. Primary endpoints are incidence and severity of AEs, as well as the best objective response to the treatment according to response evaluation criteria in solid tumors (RECIST) 1.1. Secondary endpoints include overall safety, efficacy, survival, quality of life, and pharmacokinetic investigations. Ethics and dissemination: The CD276xCD3 study was approved by the Ethics Committee of the Medical Faculty of the Heinrich Heine University Düsseldorf and the Paul-Ehrlich-Institut (P00702). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers: ClinicalTrials.cov Registry (NCT05999396) and EU ClinicalTrials Registry (EU trial number 2022-503084-15-00).

3.
J Cancer Res Clin Oncol ; 148(10): 2759-2771, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35551463

RESUMEN

PURPOSE: Acute B-lymphoblastic leukemia (B-ALL) is a malignant disease characterized by accumulation of clonal immature lymphocytes in the bone marrow and peripheral blood. The approval of BCR::ABL1 tyrosine kinase inhibitors (TKI) such as imatinib, dasatinib, nilotinib and ponatinib marked a milestone in targeted therapy only for a subset of patients carrying the translocation t(9;22)(q34;q11). Immunotherapy with the bispecific antibody (bsAb) blinatumomab targeting CD19xCD3 revolutionized treatment of all B-ALL cases. The combination of both TKI and bsAb, so-called "dual targeting", is currently under clinical investigation, although TKI might influence T cell effects. METHODS: We here investigated the combination of different TKI and blinatumomab in BCR::ABL1+ and BCR::ABL1- B-ALL cell lines and primary samples regarding T cell proliferation, differentiation, cytokine release and killing of tumor cells. RESULTS: In vitro analysis revealed profound reduction of T cell proliferation, differentiation, cytokine release and killing of tumor cells upon application of BCR::ABL1 TKI with blinatumomab. Inhibition was more pronounced with dasatinib and ponatinib compared to nilotinib and imatinib. T cell signalling after CD3 stimulation was impaired by TKI mirrored by inhibition of LCK phosphorylation. This known off-target effect might influence the efficacy of bsAb therapy when combined with BCR::ABL1 TKI. CONCLUSION: In conclusion, we propose that nilotinib and imatinib might also be suitable substances for combination with blinatumomab and suggest evaluation in clinical trials.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticuerpos Biespecíficos , Citocinas , Dasatinib/farmacología , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico
4.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010934

RESUMEN

Antibodies against the B cell-specific antigens CD20 and CD19 have markedly improved the treatment of B cell-derived lymphoma and autoimmune diseases by depleting malignant and autoreactive B cells. However, since CD20 and CD19 are also expressed on healthy B cells, such antibodies lack disease specificity. Here, we optimize a previously developed concept that uses bispecific antibodies to induce apoptosis selectively in malignant and autoreactive B cells that express the death receptor CD95. We describe the development and characterization of bispecific antibodies with CD95xCD20 and CD95xCD19 specificity in a new IgG-based format. We could show that especially the CD95xCD20 antibody mediated a strong induction of apoptosis in malignant B cells in vitro. In vivo, the antibody was clearly superior to the previously used Fabsc format with identical specificities. In addition, both IgGsc antibodies depleted activated B cells in vitro, leading to a significant reduction in antibody production and cytokine secretion. The killing of resting B cells and hepatocytes that lack CD95 and CD20/CD19, respectively, was marginal. Thus, our results imply that bispecific anti-CD95 antibodies in the IgGsc format are an attractive tool for a more selective and efficient depletion of malignant as well as autoreactive B cells.

5.
EMBO Mol Med ; 13(2): e11902, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372710

RESUMEN

The prostate-specific membrane antigen (PSMA) has been demonstrated in numerous studies to be expressed specifically on prostate carcinoma cells and on the neovasculature of several other cancer entities. However, the simultaneous expression of PSMA on both, tumor cells as well as tumor vessels remains unclear, even if such "dual" expression would constitute an important asset to facilitate sufficient influx of effector cells to a given tumor site. We report here on the generation of a PSMA antibody, termed 10B3, which exerts superior dual reactivity on sections of prostate carcinoma and squamous cell carcinoma of the lung. 10B3 was used for the construction of T-cell recruiting bispecific PSMAxCD3 antibodies in Fab- and IgG-based formats, designated Fabsc and IgGsc, respectively. In vitro, both molecules exhibited comparable activity. In contrast, only the larger IgGsc molecule induced complete and durable elimination of established tumors in humanized mice due to favorable pharmacokinetic properties. Upon treatment of three patients with metastasized prostate carcinoma with the IgGsc reagent, marked activation of T cells and rapid reduction of elevated PSA levels were observed.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias de la Próstata , Animales , Antígenos de Superficie , Humanos , Inmunoglobulina G , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Linfocitos T
6.
BMJ Open ; 10(10): e039639, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067297

RESUMEN

INTRODUCTION: Prostate cancer is the second most common cancer in men worldwide. When the disease becomes resistant to androgen-deprivation therapy, treatment options are sparse. To address the high medical need in castration-resistant prostate cancer (CRPC), we generated a novel PSMAxCD3 bispecific antibody termed CC-1. CC-1 binds to prostate-specific membrane antigen that is expressed on prostate cancer cells and tumour vessels, thereby allowing a dual anticancer effect. METHODS AND ANALYSIS: This first in human clinical study is a prospective and multicentre trial which enrols patients with metastatic CRPC after failure of established third-line therapy. CC-1 is applied after prophylactic interleukin-6 receptor blockade with tocilizumab (once 8 mg/kg body weight). Each patient receives at least one cycle of CC-1 over a time course of 7 days in an inpatient setting. If clinical benefit is observed, up to five additional cycles of CC-1 can be applied. The study is divided in two parts: (1) a dose escalation phase with intraindividual dose increase from 28 µg to the target dose of 1156 µg based on a modified fast titration design by Simon et al to determine safety, tolerability and the maximum tolerated dose (MTD) as primary endpoints and (2) a dose expansion phase with additional 14 patients on the MTD level of part (1) to identify first signs of efficacy. Secondary endpoints compromise overall safety, tumour response, survival and a translational research programme with, among others, the analysis of CC-1 half-life, the induced immune response, as well as the molecular profiling in liquid biopsies. ETHICS AND DISSEMINATION: The PSMAxCD3 study was approved by the Ethics Committee of The University Hospital Tübingen (100/2019AMG1) and the Paul-Ehrlich-Institut (3684/02). Clinical trial results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBERS: ClinicalTrials.gov Registry (NCT04104607) and ClinicalTrials.eu Registry (EudraCT2019-000238-20).


Asunto(s)
Carcinoma , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos , Castración , Ensayos Clínicos Fase I como Asunto , Humanos , Masculino , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA