Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 122(50): 9626-9636, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30450901

RESUMEN

The solid-state structures of seven solvates of C60 (C60·4tetrachloroethylene, C60·2tetrachloroethylene, C60·3benzene, C60· n-pentane, C60·diethyl ether, C60·chlorobenzene, and C60·benzene·dichloromethane) were determined by single-crystal X-ray diffraction at low temperature. At 90 K, the fullerene and solvate components are generally well-ordered and do not show the orientational disorder that plagues similar structures determined at room temperature. Interactions between the solvate molecules and the fullerene and between adjacent C60 molecules were examined and analyzed. Van der Waals and weak charge-transfer interactions are important to help to organize the individual components in these structures. The weak Lewis acid behavior of C60, such as when it cocrystallizes with diethyl ether or chlorinated solvents, is apparent. In addition, π-stacking interactions are prevalent. The solvates of C60 reported here were frequently obtained from attempts to cocrystallize C60 with another chemical compound. Although the desired cocrystals were never formed, the unincorporated molecules influenced solvate formation.

2.
Nature ; 468(7323): 567-71, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21107427

RESUMEN

Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/fisiopatología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Neoplasias Pulmonares/metabolismo , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas ras/metabolismo
3.
J Am Chem Soc ; 134(26): 10885-93, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22506844

RESUMEN

The remarkable, vapor-induced transformation of the yellow polymorphs of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) and [(C(6)H(11)NC)(2)Au(I)](PF(6)) into the colorless forms are reported along with related studies of the crystallization of these polymorphs. Although the interconversion of these polymorphs is produced by vapor exposure, molecules of the vapor are not incorporated into the crystals. Thus, our observations may have broad implications regarding the formation and persistence of other crystal polymorphs where issues of stability and reproducibility of formation exist. Crystallographic studies show that the colorless polymorphs, which display blue luminescence, are isostructural and consist of linear chains of gold(I) cations that self-associate through aurophilic interactions. Significantly, the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) is not isostructural with the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](PF(6)). Both yellow polymorphs exhibit green emission and have the gold cations arranged into somewhat bent chains with significantly closer Au···Au separations than are seen in the colorless counterparts. Luminescence differences in these polymorphs clearly enhance the ability to detect and monitor their phase stability.

5.
J Inorg Biochem ; 105(9): 1161-72, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21708101

RESUMEN

Prochelators are agents that have little affinity for metal ions until they undergo a chemical conversion. Three new aryl boronate prochelators are presented that are responsive to hydrogen peroxide to provide hexadentate ligands for chelating metal ions. TRENBSIM (tris[(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-2-aminoethyl]amine), TRENBSAM (tris[(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-2-aminoethyl]amine), and TB (tris[(2-boronic acid-benzyl)2-aminoethyl]amine) convert to TRENSIM (tris[(salicylideneamino)ethyl]amine), TRENSAM (tris[(2-hydroxybenzoyl)-2-aminoethyl]amine), and TS (tris[2-hydroxybenzyl)2-aminoethyl]amine), respectively. The prochelators were characterized by (11)B NMR, and the structures of TRENBSAM, TRENBSIM, and the Fe(III) complex of TS were determined by X-ray crystallography. Of the three prochelator/chelator pairs, TB/TS was identified as the most promising for biological applications, as they prevent iron and copper-induced hydroxyl radical generation in an in vitro assay. TB has negligible interactions with metal ions, whereas TS has apparent binding constants (log K') at pH 7.4 of 15.87 for Cu(II), 9.67 Zn(II) and 14.42 for Fe(III). Up to 1 mMTB was nontoxic to retinal pigment epithelial cells, whereas 10 µM TS induced cell death. TS protected cells against H(2)O(2)-induced death, but only within a 1-10 µM range. TB, on the other hand, had a much broader window of protection, suggesting that it may be a useful agent for preventing metal-promoted oxidative damage.


Asunto(s)
Antioxidantes/síntesis química , Compuestos de Boro/síntesis química , Quelantes/síntesis química , Células Epiteliales/efectos de los fármacos , Hierro/metabolismo , Profármacos/síntesis química , Aminas/química , Antioxidantes/farmacología , Compuestos de Boro/farmacología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Cobre/química , Cristalografía por Rayos X , Células Epiteliales/citología , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/farmacología , Radical Hidroxilo , Hierro/química , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Profármacos/farmacología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Espectrofotometría Ultravioleta
6.
Inorg Chem ; 47(3): 1087-95, 2008 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-18163613

RESUMEN

Cysteinyldopas are naturally occurring conjugates of cysteine and dopa (3,4-dihydroxy-l-phenylalanine) that are precursors to red pheomelanin pigments. Metal ions are known to influence pheomelanogenesis in vitro and may be regulatory factors in vivo. Cydo (3-[(2-amino-ethyl)sulfanyl]-4,6-di-tert-butylbenzene-1,2-diol) and CarboxyCydo (2-amino-3-(4,6-di-tert-butyl-2,3-dihydroxyphenylsulfanyl)-propionic acid) are model compounds of cysteinyldopa that retain its metal-binding functionalities but cannot polymerize due to the presence of blocking tert-butyl groups. Cydo reacts readily with zinc(II) acetate or nickel(II) acetate to form a cyclized 1,4-benzothiazine (zine) intermediate that undergoes ring contraction to form benzothiazole (zole) unless it is stabilized by coordination to a metal ion. The crystal structure of [Ni(zine)2] is reported. The acetate counteranion is required for the zinc-promoted reactivity, as neither zinc(II) sulfate nor zinc(II) chloride alone promotes the transformation. The counterion is less important for redox-active copper and iron, which both readily promote the oxidation of Cydo to zine and zole species; Cu(II) complexes of both zine and zole have been characterized by X-ray crystallography. In the case of CarboxyCydo, a 3-carboxy-1,4-benzothiazine intermediate decarboxylates to form [Cu(zine)2] under basic conditions, but in the absence of base forms a mixture of products that includes the carboxylated dimer 2,2'-bibenzothiazine (bi-zine). These products are consistent with species implicated in the pheomelanogenesis biosynthetic pathway and emphasize how metal ions, their counteranions, and reaction conditions can alter pheomelanin product distribution.


Asunto(s)
Cisteinildopa/química , Metales/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
7.
Inorg Chem ; 47(8): 3442-51, 2008 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-18345626

RESUMEN

Depending upon the crystallization conditions, [Au{C(NHMe) 2} 2](AsF 6) forms colorless crystals that display a blue or green luminescence. The difference involves the type of solvate molecule that is incorporated into the crystal and the structure of the chains of cations that are formed upon crystallization. The crystallographically determined structures of blue-glowing [Au{C(NHMe) 2} 2](AsF 6).0.5(benzene), blue-glowing [Au{C(NHMe) 2} 2](AsF 6).0.5(acetone), green-glowing [Au{C(NHMe) 2} 2](AsF 6).0.5(chlorobenzene), and blue-glowing, solvate-free [Au{C(NHMe) 2} 2](EF 6), E = P, As, Sb are reported. All pack with the cations forming extended columns, which may be linear or bent, but all show significant aurophilic interactions. The blue-glowing crystals have ordered stacks of cations with some variation in structural arrangement whereas the green-glowing crystals have disorder in their stacking pattern. Although there is extensive hydrogen bonding between the cations and anions in all structures, in the solvated crystals, the solvate molecules occupy channels but make no hydrogen-bonded contacts. The emission spectra of these new salts taken at 298 and 77 K are reported.

8.
Dalton Trans ; (43): 5031-42, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17992288

RESUMEN

Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interaction with copper(II), zinc(II) and nickel(II). Hydrogen peroxide oxidizes the aryl boronate to phenol, thus converting the pro-chelators to tridentate ligands with high affinity metal binding properties. An X-ray crystal structure of a bis-ligated iron(III) complex, [Fe(SBH(m-OMe)(3))(2)]NO(3), confirms the meridonal binding mode of these ligands. Modifications of the aroyl ring of the chelators tune their iron affinity, whereas modifications on the boron-containing ring of the pro-chelators attenuate their reaction rates with hydrogen peroxide. Thus, the methoxy derivative pro-chelator (p-OMe)BASIH reacts with hydrogen peroxide nearly 5 times faster than the chloro derivative (m-Cl)BASIH. Both the rate of pro-chelator to chelator conversion as well as the metal binding affinity of the chelator influence the overall ability of these molecules to inhibit hydroxyl radical formation catalyzed by iron or copper in the presence of hydrogen peroxide and ascorbic acid. This pro-chelator strategy has the potential to improve the efficacy of medicinal chelators for inhibiting metal-promoted oxidative stress.


Asunto(s)
Compuestos de Boro/química , Quelantes/química , Peróxido de Hidrógeno/química , Metales/química , Estrés Oxidativo , Ésteres , Humanos , Cinética , Modelos Moleculares , Análisis Espectral/métodos
9.
Inorg Chem ; 45(16): 6102-4, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16878910

RESUMEN

A new cysteinyldopa model ligand Cydo {3-[(2-aminoethyl)sulfanyl]-4,6-di-tert-butylbenzene-1,2-diol} was prepared and its reactivity with Cu(II) explored. Under anaerobic conditions, tetranuclear [Cu4(Cydo)4] is isolated, but in the presence of O2, a benzothiazine intermediate accumulates that is trapped as the Cu(II) complex [Cu(zine)2]. Under slightly different reaction conditions, the benzothiazine further oxidizes to benzothiazole (zole). All three compounds were characterized by X-ray crystallography, and the reactions were monitored spectrophotometrically.


Asunto(s)
Derivados del Benceno/química , Cobre/química , Cisteinildopa/análogos & derivados , Melaninas/química , Tiazinas/química , Derivados del Benceno/síntesis química , Cisteinildopa/síntesis química , Ligandos , Tiazinas/síntesis química
10.
J Am Chem Soc ; 128(38): 12424-5, 2006 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-16984186

RESUMEN

The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution.


Asunto(s)
Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Quelantes del Hierro/química , Hierro/química , Profármacos/química , Aldehídos/química , Ácidos Borónicos/química , Cristalografía por Rayos X , Desoxirribosa/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Hidrazonas/química , Radical Hidroxilo/antagonistas & inhibidores , Hierro/antagonistas & inhibidores , Quelantes del Hierro/síntesis química , Ácidos Isonicotínicos/química , Oxidación-Reducción , Profármacos/síntesis química , Espectrofotometría Ultravioleta
11.
J Am Chem Soc ; 127(31): 10838-9, 2005 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-16076183

RESUMEN

Crystallographic examination of [mu3-S(AuCNC7H13)3](SbF6) shows that it undergoes a reversible phase change from orthorhombic to monoclinic upon cooling. At 190 K, the structure shows that two cations self-associate to form a pseudo-octahedral array of six gold atoms connected by both intra- and interionic aurophilic interactions. On cooling, the clusters become less symmetric, and in one, the interionic Au...Au separations increase, while they decrease in the second cluster. The luminescence of crystalline [mu3-S(AuCNC7H13)3](SbF6) shows corresponding changes in emission, with two emissions of similar lifetimes but with different excitations at 77 K, but only a single emission at 298 K. In contrast, [mu3-S(AuCNC6H11)3](PF6), which has a similar structure to that of the high-temperature form of [mu3-S(AuCNC7H13)3](SbF6), does not undergo a phase change or change in its luminescence upon cooling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA