RESUMEN
BACKGROUND: Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS: We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS: In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION: The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.
Asunto(s)
Población Negra , Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Femenino , Humanos , Población Negra/genética , Neoplasias de la Mama/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido SimpleRESUMEN
Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Adulto , Anciano de 80 o más Años , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Femenino , Humanos , Herencia Multifactorial/genética , Penetrancia , Adulto JovenRESUMEN
By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p < 5.0 × 10-8 and a Bonferroni-corrected p < 4.6 × 10-6, respectively. Of them, 32 loci and 15 genes showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the significant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer risk variants. Pathways analyses including 221 putative risk genes identified multiple signaling pathways that may play a significant role in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics of this common malignancy.
Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Femenino , Humanos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética , Neoplasias de la Mama/genética , Estudios de Casos y ControlesRESUMEN
Common genetic variation throughout the genome together with rare coding variants identified to date explain about a half of the inherited genetic component of epithelial ovarian cancer risk. It is likely that rare variation in the non-coding genome will explain some of the unexplained heritability, but identifying such variants is challenging. The primary problem is lack of statistical power to identifying individual risk variants by association as power is a function of sample size, effect size and allele frequency. Power can be increased by using burden tests which test for association of carriers of any variant in a specified genomic region. This has the effect of increasing the putative effect allele frequency. PAX8 is a transcription factor that plays a critical role in tumour progression, migration and invasion. Furthermore, regulatory elements proximal to target genes of PAX8 are enriched for common ovarian cancer risk variants. We hypothesised that rare variation in PAX8 binding sites are also associated with ovarian cancer risk, but unlikely to be associated with risk of breast, colorectal or endometrial cancer. We have used publicly available, whole-genome sequencing data from the UK 100,000 Genomes Project to evaluate the burden of rare variation in PAX8 binding sites across the genome. Data were available for 522 ovarian cancers, 2,984 breast cancers, 2,696 colorectal cancers, 836 endometrial cancers and 2253 non-cancer controls. Active binding sites were defined using data from multiple PAX8 and H3K27 ChIPseq experiments. We found no association between the burden of rare variation in PAX8 binding sites (defined in several ways) and risk of ovarian, breast or endometrial cancer. An apparent association with colorectal cancer was likely to be a technical artefact as a similar association was also detected for rare variation in random regions of the genome. Despite the null result this study provides a proof-of -principle for using burden testing to identify rare, non-coding germline genetic variation associated with disease. Larger sample sizes available from large-scale sequencing projects together with improved understanding of the function of the non-coding genome will increase the potential of similar studies in the future.
RESUMEN
Limited estimates exist on risk factors for epithelial ovarian cancer (EOC) in Asian, Hispanic, and Native Hawaiian/Pacific Islander women. Participants in this study included 1734 Asian (n = 785 case and 949 control participants), 266 Native Hawaiian/Pacific Islander (n = 99 case and 167 control participants), 1149 Hispanic (n = 505 case and 644 control participants), and 24 189 White (n = 9981 case and 14 208 control participants) from 11 studies in the Ovarian Cancer Association Consortium. Logistic regression models estimated odds ratios (ORs) and 95% CIs for risk associations by race and ethnicity. Heterogeneity in EOC risk associations by race and ethnicity (P ≤ .02) was observed for oral contraceptive (OC) use, parity, tubal ligation, and smoking. We observed inverse associations with EOC risk for OC use and parity across all groups; associations were strongest in Native Hawaiian/Pacific Islander and Asian women. The inverse association for tubal ligation with risk was most pronounced for Native Hawaiian/Pacific Islander participants (odds ratio (OR) = 0.25; 95% CI, 0.13-0.48) compared with Asian and White participants (OR = 0.68 [95% CI, 0.51-0.90] and OR = 0.78 [95% CI, 0.73-0.85], respectively). Differences in EOC risk factor associations were observed across racial and ethnic groups, which could be due, in part, to varying prevalence of EOC histotypes. Inclusion of greater diversity in future studies is essential to inform prevention strategies. This article is part of a Special Collection on Gynecological Cancers.
Asunto(s)
Carcinoma Epitelial de Ovario , Neoplasias Ováricas , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Asiático , Carcinoma Epitelial de Ovario/etnología , Carcinoma Epitelial de Ovario/epidemiología , Estudios de Casos y Controles , Anticonceptivos Orales/efectos adversos , Etnicidad , Hispánicos o Latinos , Modelos Logísticos , Nativos de Hawái y Otras Islas del Pacífico , Oportunidad Relativa , Neoplasias Ováricas/etnología , Neoplasias Ováricas/epidemiología , Paridad , Factores de Riesgo , Fumar/etnología , Fumar/epidemiología , Esterilización Tubaria/estadística & datos numéricos , Estados Unidos/epidemiología , BlancoRESUMEN
Polygenic risk scores (PRSs) are useful for predicting breast cancer risk, but the prediction accuracy of existing PRSs in women of African ancestry (AA) remains relatively low. We aim to develop optimal PRSs for the prediction of overall and estrogen receptor (ER) subtype-specific breast cancer risk in AA women. The AA dataset comprised 9235 cases and 10 184 controls from four genome-wide association study (GWAS) consortia and a GWAS study in Ghana. We randomly divided samples into training and validation sets. We built PRSs using individual-level AA data by a forward stepwise logistic regression and then developed joint PRSs that combined (1) the PRSs built in the AA training dataset and (2) a 313-variant PRS previously developed in women of European ancestry. PRSs were evaluated in the AA validation set. For overall breast cancer, the odds ratio per standard deviation of the joint PRS in the validation set was 1.34 [95% confidence interval (CI): 1.27-1.42] with the area under receiver operating characteristic curve (AUC) of 0.581. Compared with women with average risk (40th-60th PRS percentile), women in the top decile of the PRS had a 1.98-fold increased risk (95% CI: 1.63-2.39). For PRSs of ER-positive and ER-negative breast cancer, the AUCs were 0.608 and 0.576, respectively. Compared with existing methods, the proposed joint PRSs can improve prediction of breast cancer risk in AA women.
Asunto(s)
Neoplasias de la Mama , Estudio de Asociación del Genoma Completo , Neoplasias de la Mama/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Herencia Multifactorial/genética , Receptores de Estrógenos/genética , Factores de RiesgoRESUMEN
BACKGROUND: Genetic, lifestyle, reproductive, and anthropometric factors are associated with the risk of developing breast cancer. However, it is not yet known whether polygenic risk score (PRS) and absolute risk based on a combination of risk factors are associated with the risk of progression of breast cancer. This study aims to estimate the distribution of sojourn time (pre-clinical screen-detectable period) and mammographic sensitivity by absolute breast cancer risk derived from polygenic proï¬le and the other risk factors. METHODS: The authors used data from a population-based case-control study. Six categories of 10-year absolute risk based on different combinations of risk factors were derived using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm. Women were classiï¬ed into low, medium, and high-risk groups. The authors constructed a continuous-time multistate model. To calculate the sojourn time, they simulated the trajectories of subjects through the disease states. RESULTS: There was little diï¬erence in sojourn time with a large overlap in the 95% conï¬dence interval (CI) between the risk groups across the six risk categories and PRS studied. However, the age of entry into the screen-detectable state varied by risk category, with the mean age of entry of 53.4 years (95% CI, 52.2-54.1) and 57.0 years (95% CI, 55.1-57.7) in the high-risk and low-risk women, respectively. CONCLUSION: In risk-stratiï¬ed breast screening, the age at the start of screening, but not necessarily the frequency of screening, should be tailored to a woman's risk level. The optimal risk-stratiï¬ed screening strategy that would improve the beneï¬t-to-harm balance and the cost-eï¬ectiveness of the screening programs needs to be studied.
Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico , Puntuación de Riesgo Genético , Estudios de Casos y Controles , Edad de Inicio , Factores de Riesgo , Medición de Riesgo , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: The clinical validity of the multifactorial BOADICEA model for epithelial tubo-ovarian cancer (EOC) risk prediction has not been assessed in a large sample size or over a longer term. METHODS: We evaluated the model discrimination and calibration in the UK Biobank cohort comprising 199,429 women (733 incident EOCs) of European ancestry without previous cancer history. We predicted 10-year EOC risk incorporating data on questionnaire-based risk factors (QRFs), family history, a 36-SNP polygenic risk score and pathogenic variants (PV) in six EOC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, BRIP1 and PALB2). RESULTS: Discriminative ability was maximised under the multifactorial model that included all risk factors (AUC = 0.68, 95% CI: 0.66-0.70). This model was well calibrated in deciles of predicted risk with calibration slope=0.99 (95% CI: 0.98-1.01). Discriminative ability was similar in women younger or older than 60 years. The AUC was higher when analyses were restricted to PV carriers (0.76, 95% CI: 0.69-0.82). Using relative risk (RR) thresholds, the full model classified 97.7%, 1.7%, 0.4% and 0.2% women in the RR < 2.0, 2.0 ≤ RR < 2.9, 2.9 ≤ RR < 6.0 and RR ≥ 6.0 categories, respectively, identifying 9.1 of incident EOC among those with RR ≥ 2.0. DISCUSSION: BOADICEA, implemented in CanRisk ( www.canrisk.org ), provides valid 10-year EOC risks and can facilitate clinical decision-making in EOC risk management.
RESUMEN
BACKGROUND: Traditional body-shape indices such as Waist Circumference (WC), Hip Circumference (HC), and Waist-to-Hip Ratio (WHR) are associated with colorectal cancer (CRC) risk, but are correlated with Body Mass Index (BMI), and adjustment for BMI introduces a strong correlation with height. Thus, new allometric indices have been developed, namely A Body Shape Index (ABSI), Hip Index (HI), and Waist-to-Hip Index (WHI), which are uncorrelated with weight and height; these have also been associated with CRC risk in observational studies, but information from Mendelian randomization (MR) studies is missing. METHODS: We used two-sample MR to examine potential causal cancer site- and sex-specific associations of the genetically-predicted allometric body-shape indices with CRC risk, and compared them with BMI-adjusted traditional body-shape indices, and BMI. Data were obtained from UK Biobank and the GIANT consortium, and from GECCO, CORECT and CCFR consortia. RESULTS: WHI was positively associated with CRC in men (OR per SD: 1.20, 95% CI: 1.03-1.39) and in women (1.15, 1.06-1.24), and similarly for colon and rectal cancer. ABSI was positively associated with colon and rectal cancer in men (1.27, 1.03-1.57; and 1.40, 1.10-1.77, respectively), and with colon cancer in women (1.20, 1.07-1.35). There was little evidence for association between HI and colon or rectal cancer. The BMI-adjusted WHR and HC showed similar associations to WHI and HI, whereas WC showed similar associations to ABSI only in women. CONCLUSIONS: This large MR study provides strong evidence for a potential causal positive association of the allometric indices ABSI and WHI with CRC in both sexes, thus establishing the association between abdominal fat and CRC without the limitations of the traditional waist size indices and independently of BMI. Among the BMI-adjusted traditional indices, WHR and HC provided equivalent associations with WHI and HI, while differences were observed between WC and ABSI.
Asunto(s)
Índice de Masa Corporal , Neoplasias Colorrectales , Análisis de la Aleatorización Mendeliana , Relación Cintura-Cadera , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Masculino , Femenino , Factores de Riesgo , Circunferencia de la CinturaRESUMEN
AIMS/HYPOTHESIS: Epidemiological studies have generated conflicting findings on the relationship between glucose-lowering medication use and cancer risk. Naturally occurring variation in genes encoding glucose-lowering drug targets can be used to investigate the effect of their pharmacological perturbation on cancer risk. METHODS: We developed genetic instruments for three glucose-lowering drug targets (peroxisome proliferator activated receptor γ [PPARG]; sulfonylurea receptor 1 [ATP binding cassette subfamily C member 8 (ABCC8)]; glucagon-like peptide 1 receptor [GLP1R]) using summary genetic association data from a genome-wide association study of type 2 diabetes in 148,726 cases and 965,732 controls in the Million Veteran Program. Genetic instruments were constructed using cis-acting genome-wide significant (p<5×10-8) SNPs permitted to be in weak linkage disequilibrium (r2<0.20). Summary genetic association estimates for these SNPs were obtained from genome-wide association study (GWAS) consortia for the following cancers: breast (122,977 cases, 105,974 controls); colorectal (58,221 cases, 67,694 controls); prostate (79,148 cases, 61,106 controls); and overall (i.e. site-combined) cancer (27,483 cases, 372,016 controls). Inverse-variance weighted random-effects models adjusting for linkage disequilibrium were employed to estimate causal associations between genetically proxied drug target perturbation and cancer risk. Co-localisation analysis was employed to examine robustness of findings to violations of Mendelian randomisation (MR) assumptions. A Bonferroni correction was employed as a heuristic to define associations from MR analyses as 'strong' and 'weak' evidence. RESULTS: In MR analysis, genetically proxied PPARG perturbation was weakly associated with higher risk of prostate cancer (for PPARG perturbation equivalent to a 1 unit decrease in inverse rank normal transformed HbA1c: OR 1.75 [95% CI 1.07, 2.85], p=0.02). In histological subtype-stratified analyses, genetically proxied PPARG perturbation was weakly associated with lower risk of oestrogen receptor-positive breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10-3). In co-localisation analysis, however, there was little evidence of shared causal variants for type 2 diabetes liability and cancer endpoints in the PPARG locus, although these analyses were likely underpowered. There was little evidence to support associations between genetically proxied PPARG perturbation and colorectal or overall cancer risk or between genetically proxied ABCC8 or GLP1R perturbation with risk across cancer endpoints. CONCLUSIONS/INTERPRETATION: Our drug target MR analyses did not find consistent evidence to support an association of genetically proxied PPARG, ABCC8 or GLP1R perturbation with breast, colorectal, prostate or overall cancer risk. Further evaluation of these drug targets using alternative molecular epidemiological approaches may help to further corroborate the findings presented in this analysis. DATA AVAILABILITY: Summary genetic association data for select cancer endpoints were obtained from the public domain: breast cancer ( https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ ); and overall prostate cancer ( http://practical.icr.ac.uk/blog/ ). Summary genetic association data for colorectal cancer can be accessed by contacting GECCO (kafdem at fredhutch.org). Summary genetic association data on advanced prostate cancer can be accessed by contacting PRACTICAL (practical at icr.ac.uk). Summary genetic association data on type 2 diabetes from Vujkovic et al (Nat Genet, 2020) can be accessed through dbGAP under accession number phs001672.v3.p1 (pha004945.1 refers to the European-specific summary statistics). UK Biobank data can be accessed by registering with UK Biobank and completing the registration form in the Access Management System (AMS) ( https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access ).
Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Neoplasias de la Próstata , Masculino , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Factores de Riesgo , Glucosa , Estudio de Asociación del Genoma Completo , PPAR gamma/genética , Neoplasias de la Mama/genética , Neoplasias de la Próstata/complicaciones , Neoplasias Colorrectales/genética , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS313) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS313 was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18-1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at the 90th percentile of PRS313. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS313 alone was 0.563 (95%CI = 0.547-0.586). In conclusion, PRS313 is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies.
Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Herencia Multifactorial , Neoplasias Primarias Secundarias/genética , Adulto , Anciano , Pueblo Asiatico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/etnología , Neoplasias de la Mama/terapia , Estudios de Cohortes , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Neoplasias Primarias Secundarias/diagnóstico , Neoplasias Primarias Secundarias/etnología , Neoplasias Primarias Secundarias/terapia , Pronóstico , Modelos de Riesgos Proporcionales , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Medición de Riesgo , Población BlancaRESUMEN
OBJECTIVE: The presence of macroscopic residual disease after primary cytoreductive surgery (PCS) is an important factor influencing survival for patients with high-grade serous ovarian cancer (HGSC). More research is needed to identify factors associated with having macroscopic residual disease. We analyzed 12 lifestyle and personal exposures known to be related to ovarian cancer risk or inflammation to identify those associated with having residual disease after surgery. METHODS: This analysis used data on 2054 patients with advanced stage HGSC from the Ovarian Cancer Association Consortium. The exposures were body mass index, breastfeeding, oral contraceptive use, depot-medroxyprogesterone acetate use, endometriosis, first-degree family history of ovarian cancer, incomplete pregnancy, menopausal hormone therapy use, menopausal status, parity, smoking, and tubal ligation. Logistic regression models were fit to assess the association between these exposures and having residual disease following PCS. RESULTS: Menopausal estrogen-only therapy (ET) use was associated with 33% lower odds of having macroscopic residual disease compared to never use (OR = 0.67, 95%CI 0.46-0.97, p = 0.033). Compared to nulliparous women, parous women who did not breastfeed had 36% lower odds of having residual disease (OR = 0.64, 95%CI 0.43-0.94, p = 0.022), while there was no association among parous women who breastfed (OR = 0.90, 95%CI 0.65-1.25, p = 0.53). CONCLUSIONS: The association between ET and having no macroscopic residual disease is plausible given a strong underlying biologic hypothesis between this exposure and diagnosis with HGSC. If this or the parity finding is replicated, these factors could be included in risk stratification models to determine whether HGSC patients should receive PCS or neoadjuvant chemotherapy.
Asunto(s)
Procedimientos Quirúrgicos de Citorreducción , Neoplasias Ováricas , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Neoplasias Ováricas/tratamiento farmacológico , Carcinoma Epitelial de Ovario , ParidadRESUMEN
OBJECTIVE: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. METHODS: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. RESULTS: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. CONCLUSION: In summary, MOCs are mostly immunogenically 'cold', suggesting they may have limited response to current immunotherapies.
Asunto(s)
Antígeno B7-H1 , Neoplasias Ováricas , Humanos , Femenino , Antígeno B7-H1/genética , Carcinoma Epitelial de Ovario/patología , Neoplasias Ováricas/tratamiento farmacológico , Linfocitos T CD8-positivos , Factores de Transcripción Forkhead/uso terapéutico , Linfocitos Infiltrantes de Tumor , Microambiente TumoralRESUMEN
Light-at-night triggers the decline of pineal gland melatonin biosynthesis and secretion and is an IARC-classified probable breast-cancer risk factor. We applied a large-scale molecular epidemiology approach to shed light on the putative role of melatonin in breast cancer. We investigated associations between breast-cancer risk and polymorphisms at genes of melatonin biosynthesis/signaling using a study population of 44,405 women from the Breast Cancer Association Consortium (22,992 cases, 21,413 population-based controls). Genotype data of 97 candidate single nucleotide polymorphisms (SNPs) at 18 defined gene regions were investigated for breast-cancer risk effects. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CI) by logistic regression for the main-effect analysis as well as stratified analyses by estrogen- and progesterone-receptor (ER, PR) status. SNP-SNP interactions were analyzed via a two-step procedure based on logic regression. The Bayesian false-discovery probability (BFDP) was used for all analyses to account for multiple testing. Noteworthy associations (BFDP < 0.8) included 10 linked SNPs in tryptophan hydroxylase 2 (TPH2) (e.g. rs1386492: OR = 1.07, 95% CI 1.02-1.12), and a SNP in the mitogen-activated protein kinase 8 (MAPK8) (rs10857561: OR = 1.11, 95% CI 1.04-1.18). The SNP-SNP interaction analysis revealed noteworthy interaction terms with TPH2- and MAPK-related SNPs (e.g. rs1386483R ⧠rs1473473D ⧠rs3729931D: OR = 1.20, 95% CI 1.09-1.32). In line with the light-at-night hypothesis that links shift work with elevated breast-cancer risks our results point to SNPs in TPH2 and MAPK-genes that may impact the intricate network of circadian regulation.
Asunto(s)
Neoplasias de la Mama , Melatonina , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Melatonina/genética , Melatonina/metabolismo , Teorema de Bayes , Polimorfismo de Nucleótido Simple , Modelos Logísticos , Estudios de Casos y Controles , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: Prediction of contralateral breast cancer (CBC) risk is challenging due to moderate performances of the known risk factors. We aimed to improve our previous risk prediction model (PredictCBC) by updated follow-up and including additional risk factors. METHODS: We included data from 207,510 invasive breast cancer patients participating in 23 studies. In total, 8225 CBC events occurred over a median follow-up of 10.2 years. In addition to the previously included risk factors, PredictCBC-2.0 included CHEK2 c.1100delC, a 313 variant polygenic risk score (PRS-313), body mass index (BMI), and parity. Fine and Gray regression was used to fit the model. Calibration and a time-dependent area under the curve (AUC) at 5 and 10 years were assessed to determine the performance of the models. Decision curve analysis was performed to evaluate the net benefit of PredictCBC-2.0 and previous PredictCBC models. RESULTS: The discrimination of PredictCBC-2.0 at 10 years was higher than PredictCBC with an AUC of 0.65 (95% prediction intervals (PI) 0.56-0.74) versus 0.63 (95%PI 0.54-0.71). PredictCBC-2.0 was well calibrated with an observed/expected ratio at 10 years of 0.92 (95%PI 0.34-2.54). Decision curve analysis for contralateral preventive mastectomy (CPM) showed the potential clinical utility of PredictCBC-2.0 between thresholds of 4 and 12% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers. CONCLUSIONS: Additional genetic information beyond BRCA1/2 germline mutations improved CBC risk prediction and might help tailor clinical decision-making toward CPM or alternative preventive strategies. Identifying patients who benefit from CPM, especially in the general breast cancer population, remains challenging.
Asunto(s)
Neoplasias de la Mama , Mastectomía Profiláctica , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Mastectomía , Mutación de Línea Germinal , Factores de RiesgoRESUMEN
Recently, ovarian cancer research has evolved considerably because of the emerging recognition that rather than a single disease, ovarian carcinomas comprise several different histotypes that vary by etiologic origin, risk factors, molecular profiles, therapeutic approaches and clinical outcome. Despite significant progress in our understanding of the etiologic heterogeneity of ovarian cancer, as well as important clinical advances, it remains the eighth most frequently diagnosed cancer in women worldwide and the most fatal gynecologic cancer. The International Agency for Research on Cancer and the United States National Cancer Institute jointly convened an expert panel on ovarian carcinoma to develop consensus research priorities based on evolving scientific discoveries. Expertise ranged from etiology, prevention, early detection, pathology, model systems, molecular characterization and treatment/clinical management. This report summarizes the current state of knowledge and highlights expert consensus on future directions to continue advancing etiologic, epidemiologic and prognostic research on ovarian carcinoma.
Asunto(s)
Testimonio de Experto , Carga Global de Enfermedades/tendencias , Neoplasias Ováricas/etiología , Neoplasias Ováricas/prevención & control , Congresos como Asunto , Femenino , Carga Global de Enfermedades/estadística & datos numéricos , Humanos , Agencias Internacionales , National Cancer Institute (U.S.) , Neoplasias Ováricas/patología , Estados UnidosRESUMEN
BACKGROUND: Advancements in cancer therapeutics have resulted in increases in cancer-related survival; however, there is a growing clinical dilemma. The current balancing of survival benefits and future cardiotoxic harms of oncotherapies has resulted in an increased burden of cardiovascular disease in breast cancer survivors. Risk stratification may help address this clinical dilemma. This study is the first to assess the association between a coronary artery disease-specific polygenic risk score and incident coronary artery events in female breast cancer survivors. METHODS: We utilized the Studies in Epidemiology and Research in Cancer Heredity prospective cohort involving 12,413 women with breast cancer with genotype information and without a baseline history of cardiovascular disease. Cause-specific hazard ratios for association of the polygenic risk score and incident coronary artery disease (CAD) were obtained using left-truncated Cox regression adjusting for age, genotype array, conventional risk factors such as smoking and body mass index, as well as other sociodemographic, lifestyle, and medical variables. RESULTS: Over a median follow-up of 10.3 years (IQR: 16.8) years, 750 incident fatal or non-fatal coronary artery events were recorded. A 1 standard deviation higher polygenic risk score was associated with an adjusted hazard ratio of 1.33 (95% CI 1.20, 1.47) for incident CAD. CONCLUSIONS: This study provides evidence that a coronary artery disease-specific polygenic risk score can risk-stratify breast cancer survivors independently of other established cardiovascular risk factors.
Asunto(s)
Neoplasias de la Mama/epidemiología , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Neoplasias de la Mama/terapia , Supervivientes de Cáncer , Femenino , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Humanos , Incidencia , Persona de Mediana Edad , Herencia Multifactorial , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Reino Unido/epidemiologíaRESUMEN
TP53 mutations are implicated in the progression of mucinous borderline tumors (MBOT) to mucinous ovarian carcinomas (MOC). Optimized immunohistochemistry (IHC) for TP53 has been established as a proxy for the TP53 mutation status in other ovarian tumor types. We aimed to confirm the ability of TP53 IHC to predict TP53 mutation status in ovarian mucinous tumors and to evaluate the association of TP53 mutation status with survival among patients with MBOT and MOC. Tumor tissue from an initial cohort of 113 women with MBOT/MOC was stained with optimized IHC for TP53 using tissue microarrays (75.2%) or full sections (24.8%) and interpreted using established criteria as normal or abnormal (overexpression, complete absence, or cytoplasmic). Cases were considered concordant if abnormal IHC staining predicted deleterious TP53 mutations. Discordant tissue microarray cases were re-evaluated on full sections and interpretational criteria were refined. The initial cohort was expanded to a total of 165 MBOT and 424 MOC for the examination of the association of survival with TP53 mutation status, assessed either by TP53 IHC and/or sequencing. Initially, 82/113 (72.6%) cases were concordant using the established criteria. Refined criteria for overexpression to account for intratumoral heterogeneity and terminal differentiation improved concordance to 93.8% (106/113). In the expanded cohort, 19.4% (32/165) of MBOT showed evidence for TP53 mutation and this was associated with a higher risk of recurrence, disease-specific death, and all-cause mortality (overall survival: HR = 4.6, 95% CI 1.5-14.3, p = 0.0087). Within MOC, 61.1% (259/424) harbored a TP53 mutation, but this was not associated with survival (overall survival, p = 0.77). TP53 IHC is an accurate proxy for TP53 mutation status with refined interpretation criteria accounting for intratumoral heterogeneity and terminal differentiation in ovarian mucinous tumors. TP53 mutation status is an important biomarker to identify MBOT with a higher risk of mortality.
Asunto(s)
Biomarcadores de Tumor/genética , Análisis Mutacional de ADN , Inmunohistoquímica , Mutación , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Australia , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Quísticas, Mucinosas y Serosas/mortalidad , Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Quísticas, Mucinosas y Serosas/terapia , América del Norte , Variaciones Dependientes del Observador , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Análisis de Matrices Tisulares , Reino UnidoRESUMEN
OBJECTIVE: Most women with epithelial ovarian cancer (EOC) are diagnosed after the disease has metastasized and survival in this group remains poor. Circulating proteins associated with the risk of developing EOC have the potential to serve as biomarkers for early detection and diagnosis. We integrated large-scale genomic and proteomic data to identify novel plasma proteins associated with EOC risk. METHODS: We used the germline genetic variants most strongly associated (P <1.5 × 10-11) with plasma levels of 1329 proteins in 3301 healthy individuals from the INTERVAL study to predict circulating levels of these proteins in 22,406 EOC cases and 40,941 controls from the Ovarian Cancer Association Consortium (OCAC). Association testing was performed by weighting the beta coefficients and standard errors for EOC risk from the OCAC study by the inverse of the beta coefficients from INTERVAL. RESULTS: We identified 26 proteins whose genetically predicted circulating levels were associated with EOC risk at false discovery rate < 0.05. The 26 proteins included MFAP2, SEMG2, DLK1, and NTNG1 and a group of 22 proteins whose plasma levels were predicted by variants at chromosome 9q34.2. All 26 protein association signals identified were driven by association with the high-grade serous histotype that comprised 58% of the EOC cases in OCAC. Regional genomic plots confirmed overlap of the genetic association signal underlying both plasma protein level and EOC risk for the 26 proteins. Pathway analysis identified enrichment of seven biological pathways among the 26 proteins (Padjusted <0.05), highlighting roles for Focal Adhesion-PI3K-Akt-mTOR and Notch signaling. CONCLUSION: The identified proteins further illuminate the etiology of EOC and represent promising new EOC biomarkers for targeted validation by studies involving direct measurement of plasma proteins in EOC patient cohorts.
Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Epitelial de Ovario/epidemiología , Neoplasias Ováricas/epidemiología , Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/sangre , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Estudios de Casos y Controles , Inglaterra/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Voluntarios Sanos , Humanos , Invasividad Neoplásica/genética , Neoplasias Ováricas/sangre , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple , Medición de Riesgo/métodosRESUMEN
A small number of circulating proteins have been reported to be associated with breast cancer risk, with inconsistent results. Herein, we attempted to identify novel protein biomarkers for breast cancer via the integration of genomics and proteomics data. In the Breast Cancer Association Consortium (BCAC), with 122,977 cases and 105,974 controls of European descendants, we evaluated the associations of the genetically predicted concentrations of >1,400 circulating proteins with breast cancer risk. We used data from a large-scale protein quantitative trait loci (pQTL) analysis as our study instrument. Summary statistics for these pQTL variants related to breast cancer risk were obtained from the BCAC and used to estimate odds ratios (OR) for each protein using the inverse-variance weighted method. We identified 56 proteins significantly associated with breast cancer risk by instrumental analysis (false discovery rate <0.05). Of these, the concentrations of 32 were influenced by variants close to a breast cancer susceptibility locus (ABO, 9q34.2). Many of these proteins, such as insulin receptor, insulin-like growth factor receptor 1 and other membrane receptors (OR: 0.82-1.18, p values: 6.96 × 10-4 -3.28 × 10-8 ), are linked to insulin resistance and estrogen receptor signaling pathways. Proteins identified at other loci include those involved in biological processes such as alcohol and lipid metabolism, proteolysis, apoptosis, immune regulation and cell motility and proliferation. Consistent associations were observed for 22 proteins in the UK Biobank data (p < 0.05). The study identifies potential novel biomarkers for breast cancer, but further investigation is needed to replicate our findings.