Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 181(5): 1097-1111.e12, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32442406

RESUMEN

The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.


Asunto(s)
Desmidiales/genética , Desmidiales/metabolismo , Embryophyta/genética , Evolución Biológica , Pared Celular/genética , Pared Celular/metabolismo , Ecosistema , Evolución Molecular , Filogenia , Plantas
2.
Plant Physiol ; 190(4): 2557-2578, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36135793

RESUMEN

Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Deshidratación/genética , Deshidratación/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigénesis Genética
3.
Proc Natl Acad Sci U S A ; 117(22): 12464-12471, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424100

RESUMEN

Plant cuticles are composed of wax and cutin and evolved in the land plants as a hydrophobic boundary that reduces water loss from the plant epidermis. The expanding maize adult leaf displays a dynamic, proximodistal gradient of cuticle development, from the leaf base to the tip. Laser microdissection RNA Sequencing (LM-RNAseq) was performed along this proximodistal gradient, and complementary network analyses identified potential regulators of cuticle biosynthesis and deposition. A weighted gene coexpression network (WGCN) analysis suggested a previously undescribed function for PHYTOCHROME-mediated light signaling during the regulation of cuticular wax deposition. Genetic analyses reveal that phyB1 phyB2 double mutants of maize exhibit abnormal cuticle composition, supporting the predictions of our coexpression analysis. Reverse genetic analyses also show that phy mutants of the moss Physcomitrella patens exhibit abnormal cuticle composition, suggesting an ancestral role for PHYTOCHROME-mediated, light-stimulated regulation of cuticle development during plant evolution.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Transcriptoma , Zea mays/genética , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/efectos de la radiación , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/efectos de la radiación
4.
J Exp Bot ; 72(22): 7694-7709, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34286838

RESUMEN

The breeding of hybrid cultivars of hemp (Cannabis sativa L.) is not well described, especially the segregation and inheritance of traits that are important for yield. A total of 23 families were produced from genetically diverse parents to investigate the inheritance of morphological traits and their association with biomass accumulation and cannabinoid yield. In addition, a novel classification method for canopy architecture was developed. The strong linear relationship between wet and dry biomass provided an accurate estimate of final dry stripped floral biomass. Of all field and aerial measurements, basal stem diameter was determined to be the single best selection criterion for final dry stripped floral biomass yield. Along with stem diameter, canopy architecture and stem growth predictors described the majority of the explainable variation of biomass yield. Within-family variance for morphological and cannabinoid measurements reflected the heterozygosity of the parents. While selfed populations suffered from inbreeding depression, hybrid development in hemp will require at least one inbred parent to achieve uniform growth and biomass yield. Nevertheless, floral phenology remains a confounding factor in selection because of its underlying influence on biomass production, highlighting the need to understand the genetic basis for flowering time in the breeding of uniform cultivars.


Asunto(s)
Cannabinoides , Cannabis , Biomasa , Fenotipo
5.
New Phytol ; 226(3): 809-822, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31883116

RESUMEN

The cuticle is an essential and ubiquitous biological polymer composite covering aerial plant organs, whose structural component is the cutin polyester entangled with cell wall polysaccharides. The nature of the cutin-embedded polysaccharides (CEPs) and their association with cutin polyester are still unresolved Using tomato fruit as a model, chemical and enzymatic pretreatments combined with biochemical and biophysical methods were developed to compare the fine structure of CEPs with that of the noncutinized polysaccharides (NCPs). In addition, we used tomato fruits from cutin-deficient transgenic lines cus1 (cutin synthase 1) to study the impact of cutin polymerization on the fine structure of CEPs. Cutin-embedded polysaccharides exhibit specific structural features including a high degree of esterification (i.e. methylation and acetylation), a low ramification of rhamnogalacturonan (RGI), and a high crystallinity of cellulose. In addition to decreasing cutin deposition and polymerization, cus1 silencing induced a specific modification of CEPs, especially on pectin content, while NCPs were not affected. This new evidence of the structural specificities of CEPs and of the cross-talk between cutin polymerization and polysaccharides provides new hypotheses concerning the formation of these complex lipopolysaccharide edifices.


Asunto(s)
Solanum lycopersicum , Pared Celular , Frutas , Lípidos de la Membrana , Poliésteres , Polisacáridos
6.
Plant Physiol ; 170(2): 807-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26676255

RESUMEN

Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance.


Asunto(s)
Lipasa/metabolismo , Lípidos de la Membrana/química , Solanum lycopersicum/enzimología , Esterificación , Ésteres/química , Metanosulfonato de Etilo/metabolismo , Ácidos Grasos/química , Frutas/enzimología , Frutas/genética , Glicerol/química , Lipasa/genética , Solanum lycopersicum/genética , Lípidos de la Membrana/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliésteres/química , Polimerizacion , Polímeros/química
7.
Plant J ; 80(5): 926-35, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25280021

RESUMEN

The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 µm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.


Asunto(s)
Lípidos de la Membrana/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Hidrólisis , Procesamiento de Imagen Asistido por Computador , Lípidos/análisis , Lípidos/química , Solanum lycopersicum/química , Malus/química , Lípidos de la Membrana/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas
8.
Plant Direct ; 7(6): e503, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37347078

RESUMEN

Cannabis sativa is cultivated for multiple uses including the production of cannabinoids. In developing improved production systems for high-cannabinoid cultivars, scientists and cultivators must consider the optimization of complex and interacting sets of morphological, phenological, and biochemical traits, which have historically been shaped by natural and anthropogenic selection. Determining factors that modulate cannabinoid variation within and among genotypes is fundamental to developing efficient production systems and understanding the ecological significance of cannabinoids. Thirty-two high-cannabinoid hemp cultivars were characterized for traits including flowering date and shoot-tip cannabinoid concentration. Additionally, a set of plant architecture traits, as well as wet, dry, and stripped inflorescence biomass were measured at harvest. One plant per plot was partitioned post-harvest to quantify intra-plant variation in inflorescence biomass production and cannabinoid concentration. Some cultivars showed intra-plant variation in cannabinoid concentration, while many had a consistent concentration regardless of canopy position. There was both intra- and inter-cultivar variation in architecture that correlated with intra-plant distribution of inflorescence biomass, and concentration of cannabinoids sampled from various positions within a plant. These relationships among morphological and biochemical traits will inform future decisions by cultivators, regulators, and plant breeders.

9.
Hortic Res ; 10(11): uhad207, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023471

RESUMEN

In the decades since the first cannabinoids were identified by scientists, research has focused almost exclusively on the function and capacity of cannabinoids as medicines and intoxicants for humans and other vertebrates. Very little is known about the adaptive value of cannabinoid production, though several hypotheses have been proposed including protection from ultraviolet radiation, pathogens, and herbivores. To test the prediction that genotypes with greater concentrations of cannabinoids will have reduced herbivory, a segregating F2 population of Cannabis sativa was leveraged to conduct lab- and field-based bioassays investigating the function of cannabinoids in mediating interactions with chewing herbivores. In the field, foliar cannabinoid concentration was inversely correlated with chewing herbivore damage. On detached leaves, Trichoplusia ni larvae consumed less leaf area and grew less when feeding on leaves with greater concentrations of cannabinoids. Scanning electron and light microscopy were used to characterize variation in glandular trichome morphology. Cannabinoid-free genotypes had trichomes that appeared collapsed. To isolate cannabinoids from confounding factors, artificial insect diet was amended with cannabinoids in a range of physiologically relevant concentrations. Larvae grew less and had lower rates of survival as cannabinoid concentration increased. These results support the hypothesis that cannabinoids function in defense against chewing herbivores.

10.
Front Plant Sci ; 12: 786874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069645

RESUMEN

Cuticles are specialized cell wall structures that form at the surface of terrestrial plant organs. They are largely comprised lipidic compounds and are deposited in the apoplast, external to the polysaccharide-rich primary wall, creating a barrier to diffusion of water and solutes, as well as to environmental factors. The predominant cuticle component is cutin, a polyester that is assembled as a complex matrix, within and on the surface of which aliphatic and aromatic wax molecules accumulate, further modifying its properties. To reach the point of cuticle assembly the different acyl lipid-containing components are first exported from the cell across the plasma membrane and then traffic across the polysaccharide wall. The export of cutin precursors and waxes from the cell is known to involve plasma membrane-localized ATP-binding cassette (ABC) transporters; however, other secretion mechanisms may also contribute. Indeed, extracellular vesiculo-tubular structures have recently been reported in Arabidopsis thaliana (Arabidopsis) to be associated with the deposition of suberin, a polyester that is structurally closely related to cutin. Intriguingly, similar membranous structures have been observed in leaves and petals of Arabidopsis, although in lower numbers, but no close association with cutin formation has been identified. The possibility of multiple export mechanisms for cuticular components acting in parallel will be discussed, together with proposals for how cuticle precursors may traverse the polysaccharide cell wall before their assimilation into the cuticle macromolecular architecture.

11.
Curr Opin Plant Biol ; 55: 11-20, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203682

RESUMEN

Cutin and suberin are hydrophobic lipid biopolyester components of the cell walls of specialized plant tissue and cell-types, where they facilitate adaptation to terrestrial habitats. Many steps in their biosynthetic pathways have been characterized, but the basis of their spatial deposition and precursor trafficking is not well understood. Members of the GDSL lipase/esterase family catalyze cutin polymerization, and candidate proteins have been proposed to mediate interactions between cutin or suberin and other wall components. Comparative genomic studies of charophyte algae and early diverging land plants, combined with knowledge of the biosynthesis, trafficking and assembly mechanisms, suggests an origin for the capacity to secrete waxes, as well as aliphatic and phenolic compounds before the first colonization of true terrestrial habitats.


Asunto(s)
Embryophyta , Lípidos de la Membrana , Pared Celular , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA