Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neuroinflammation ; 13: 26, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26831741

RESUMEN

BACKGROUND: Following intracerebral hemorrhage (ICH), red blood cells release massive amounts of toxic heme that causes local brain injury. Hemopexin (Hpx) has the highest binding affinity to heme and participates in its transport, while heme oxygenase 2 (HO2) is the rate-limiting enzyme for the degradation of heme. Microglia are the resident macrophages in the brain; however, the significance and role of HO2 and Hpx on microglial clearance of the toxic heme (iron-protoporphyrin IX) after ICH still remain understudied. Accordingly, we postulated that global deletion of constitutive HO2 or Hpx would lead to worsening of ICH outcomes. METHODS: Intracerebral injection of stroma-free hemoglobin (SFHb) was used in our study to induce ICH. Hpx knockout (Hpx(-/-)) or HO2 knockout (HO2(-/-)) mice were injected with 10 µL of SFHb in the striatum. After injection, behavioral/functional tests were performed, along with anatomical analyses. Iron deposition and neuronal degeneration were depicted by Perls' and Fluoro-Jade B staining, respectively. Immunohistochemistry with anti-ionized calcium-binding adapter protein 1 (Iba1) was used to estimate activated microglial cells around the injured site. RESULTS: This study shows that deleting Hpx or HO2 aggravated SFHb-induced brain injury. Compared to wild-type littermates, larger lesion volumes were observed in Hpx(-/-) and HO2(-/-) mice, which also bear more degenerating neurons in the peri-lesion area 24 h postinjection. Fewer Iba1-positive microglial cells were detected at the peri-lesion area in Hpx(-/-) and HO2(-/-) mice, interestingly, which is associated with markedly increased iron-positive microglial cells. Moreover, the Iba1-positive microglial cells increased from 24 to 72 h postinjection and were accompanied with improved neurologic deficits in Hpx(-/-) and HO2(-/-) mice. These results suggest that Iba1-positive microglial cells could engulf the extracellular SFHb and provide protective effects after ICH. We then treated cultured primary microglial cells with SFHb at low and high concentrations. The results show that microglial cells actively take up the extracellular SFHb. Of interest, we also found that iron overload in microglia significantly reduces the Iba1 expression level and resultantly inhibits microglial phagocytosis. CONCLUSIONS: This study suggests that microglial cells contribute to hemoglobin-heme clearance after ICH; however, the resultant iron overloads in microglia appear to decrease Iba1 expression and to further inhibit microglial phagocytosis.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/genética , Hemorragia Cerebral/complicaciones , Hemo Oxigenasa (Desciclizante)/deficiencia , Hemopexina/deficiencia , Acil-CoA Deshidrogenasa/metabolismo , Animales , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/mortalidad , Modelos Animales de Enfermedad , Fluoresceínas/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemoglobinas/toxicidad , Hemopexina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Actividad Motora/genética , Proteínas del Tejido Nervioso/metabolismo , Examen Neurológico , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Factores de Tiempo
3.
Front Neurol ; 8: 244, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659854

RESUMEN

Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA