Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Hered ; 105(4): 506-520, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24744432

RESUMEN

Development rate has important implications for individual fitness and physiology. In salmonid fishes, development rate correlates with many traits later in life, including life-history diversity, growth, and age and size at sexual maturation. In rainbow trout (Oncorhynchus mykiss), a quantitative trait locus for embryonic development rate has been detected on chromosome 5 across populations. However, few candidate genes have been identified within this region. In this study, we use gene mapping, gene expression, and quantitative genetic methods to further identify the genetic basis of embryonic developmental rate in O. mykiss Among the genes located in the region of the major development rate quantitative trait locus (GHR1, Clock1a, Myd118-1, and their paralogs), all were expressed early in embryonic development (fertilization through hatch), but none were differentially expressed between individuals with the fast- or slow-developing alleles for a major embryonic development rate quantitative trait locus. In a follow-up study of migratory and resident rainbow trout from natural populations in Alaska, we found significant additive variation in development rate and, moreover, found associations between development rate and allelic variation in all 3 candidate genes within the quantitative trait locus for embryonic development. The mapping of these genes to this region and associations in multiple populations provide positional candidates for further study of their roles in growth, development, and life-history diversity in this model salmonid.


Asunto(s)
Mapeo Cromosómico , Oncorhynchus mykiss/crecimiento & desarrollo , Oncorhynchus mykiss/genética , Sitios de Carácter Cuantitativo , Alaska , Alelos , Animales , Aptitud Genética , Ligamiento Genético , Variación Genética , Genética de Población , Genotipo , Polimorfismo de Nucleótido Simple
2.
BMC Bioinformatics ; 14: 325, 2013 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-24237905

RESUMEN

BACKGROUND: The common ancestor of salmonid fishes, including rainbow trout (Oncorhynchus mykiss), experienced a whole genome duplication between 20 and 100 million years ago, and many of the duplicated genes have been retained in the trout genome. This retention complicates efforts to detect allelic variation in salmonid fishes. Specifically, single nucleotide polymorphism (SNP) detection is problematic because nucleotide variation can be found between the duplicate copies (paralogs) of a gene as well as between alleles. RESULTS: We present a method of differentiating between allelic and paralogous (gene copy) sequence variants, allowing identification of SNPs in organisms with multiple copies of a gene or set of genes. The basic strategy is to: 1) identify windows of unique cDNA sequences with homology to each other, 2) compare these unique cDNAs if they are not shared between individuals (i.e. the cDNA is homozygous in one individual and homozygous for another cDNA in the other individual), and 3) give a "SNP score" value between zero and one to each candidate sequence variant based on six criteria. Using this strategy we were able to detect about seven thousand potential SNPs from the transcriptomes of several clonal lines of rainbow trout. When directly compared to a pre-validated set of SNPs in polyploid wheat, we were also able to estimate the false-positive rate of this strategy as 0 to 28% depending on parameters used. CONCLUSIONS: This strategy has an advantage over traditional techniques of SNP identification because another dimension of sequencing information is utilized. This method is especially well suited for identifying SNPs in polyploids, both outbred and inbred, but would tend to be conservative for diploid organisms.


Asunto(s)
Duplicación de Gen , Polimorfismo de Nucleótido Simple , Transcriptoma , Animales , Secuencia de Bases , Genoma , Genómica , Humanos , Datos de Secuencia Molecular , Oncorhynchus mykiss/genética , Poliploidía , Alineación de Secuencia
3.
Mol Phylogenet Evol ; 66(3): 592-602, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23059727

RESUMEN

Sequence divergence was evaluated in the non-recombining, male-specific OmyY1 region of the Y chromosome among the subspecies of cutthroat trout (Oncorhynchus clarkii) in the western United States. This evaluation identified subspecies-discriminating OmyY1-haplotypes within a ∼1200bp region of the OmyY1 locus and localized the region to the end of the Y chromosome by FISH analysis. OmyY1 sequences were aligned and used to reconstruct a phylogeny of the cutthroat trout subspecies and related species via maximum-parsimony and Bayesian analyses. In the Y-haplotype phylogeny, clade distributions generally corresponded to the geographic distributions of the recognized subspecies. This phylogeny generally corresponded to a mitochondrial tree obtained for these subspecies in a previous study. Both support a clade of trout vs. Pacific salmon, of rainbow trout, and of a Yellowstone cutthroat group within the cutthroat trout. In our OmyY1 tree, however, the cutthroat "clade", although present topologically, was not statistically significant. Some key differences were found between trees obtained from the paternally-inherited OmyY1 vs. maternally-inherited mitochondrial haplotypes in cutthroat trout compared to rainbow trout. Other findings are: The trout OmyY1 region evolves between 3 and 13 times slower than the trout mitochondrial regions that have been studied. The Lahontan cutthroat trout had a fixed OmyY1 sequence throughout ten separate populations, suggesting this subspecies underwent a severe population bottleneck prior to its current dispersal throughout the Great Basin during the pluvial phase of the last ice age. The Yellowstone group is the most derived among the cutthroat trout and consists of the Yellowstone, Bonneville, Colorado, Rio Grande and greenback subspecies. Identification of subspecies and sex with this Y-chromosome marker may prove useful in conservation efforts.


Asunto(s)
Variación Genética , Oncorhynchus/genética , Filogenia , Cromosoma Y/genética , Animales , Secuencia de Bases , Teorema de Bayes , Colombia Británica , Cartilla de ADN/genética , Marcadores Genéticos/genética , Haplotipos/genética , Hibridación Fluorescente in Situ , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Estados Unidos
4.
BMC Genomics ; 12: 31, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21232142

RESUMEN

BACKGROUND: The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. RESULTS: Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. CONCLUSIONS: We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The potential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of other TGF ß family members in different tissues. The expression patterns of dax1 early in salmon embryogenesis implicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outside the HPAG axis are discussed.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Salmo salar/genética , Diferenciación Sexual/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación Fluorescente in Situ , Masculino , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Diferenciación Sexual/genética
5.
BMC Genomics ; 11: 539, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20923558

RESUMEN

BACKGROUND: The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and ß hemoglobin genes is of great interest. RESULTS: We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and ß hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and ß hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr ß globin genes, than the genomes of other teleosts that have been sequenced. CONCLUSIONS: We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr ß hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank GQ898924; BACs S0055H05 and S0014B03 (fps1046): GenBank GQ898925.


Asunto(s)
Evolución Molecular , Genoma/genética , Hemoglobinas/genética , Salmo salar/genética , Animales , Océano Atlántico , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Secuencia Conservada , Femenino , Orden Génico/genética , Ligamiento Genético , Cariotipificación , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Sintenía/genética , Transcripción Genética , Xenopus/genética
6.
Mol Biol Evol ; 26(5): 1117-25, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19221009

RESUMEN

There are three major multigene superfamilies of olfactory receptors (OR, V1R, and V2R) in mammals. The ORs are expressed in the main olfactory organ, whereas the V1Rs and V2Rs are located in the vomeronasal organ. Fish only possess one olfactory organ in each nasal cavity, the olfactory rosette; therefore, it has been proposed that their V2R-like genes be classified as olfactory C family G protein-coupled receptors (OlfC). There are large variations in the sizes of OR gene repertoires. Previous studies have shown that fish have between 12 and 46 functional V2R-like genes, whereas humans have lost all functional V2Rs, and frog sp. have more than 240. Pseudogenization of V2R genes is a prevalent event across species. In the mouse and frog genomes, there are approximately double the number of pseudogenes compared with functional genes. An oligonucleotide probe was designed from a conserved sequence from four Atlantic salmon OlfC genes and used to screen the Atlantic salmon bacterial artificial chromosome (BAC) library. Hybridization-positive BACs were matched to fingerprint contigs, and representative BACs were shotgun cloned and sequenced. We identified 55 OlfC genes. Twenty-nine of the OlfC genes are classified as putatively functional genes and 26 as pseudogenes. The OlfC genes are found in two genomic clusters on chromosomes 9 and 20. Phylogenetic analysis revealed that the OlfC genes could be divided into 10 subfamilies, with nine of these subfamilies corresponding to subfamilies found in other teleosts and one being salmon specific. There is also a large expansion in the number of OlfC genes in one subfamily in Atlantic salmon. Subfamily gene expansions have been identified in other teleosts, and these differences in gene number reflect species-specific evolutionary requirements for olfaction. Total RNA was isolated from the olfactory epithelium and other tissues from a presmolt to examine the expression of the odorant genes. Several of the putative OlfC genes that we identified are expressed only in the olfactory epithelium, consistent with these genes encoding odorant receptors.


Asunto(s)
Evolución Molecular , Genoma/genética , Familia de Multigenes , Receptores Odorantes/genética , Salmo salar/genética , Animales , Secuencia de Bases , Cromosomas/genética , Cromosomas Artificiales Bacterianos/genética , ADN Intergénico/genética , Femenino , Regulación de la Expresión Génica , Ligamiento Genético , Filogenia , Sintenía/genética , Transcripción Genética
7.
Genome ; 53(1): 79-82, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20130751

RESUMEN

Very little information is currently available regarding the sites of integration of transgenes in genetically engineered fish. We examined the chromosomal location of growth hormone gene constructs containing GH1 in three different strains of transgenic coho salmon produced by microinjection into pronuclei of fertilized eggs. The constructs were labeled and used as probes in fluorescence in situ hybridization experiments on chromosome preparations from the M77, MT5750A, and H3D0474 strains of transgenic coho salmon. The constructs were localized at 1-3 different sites in different strains. In the M77 strain the construct was found at a single centromeric site on a medium-sized metacentric chromosome, while in the MT5750A strain, the construct was found at a single telomeric site on the short arm of chromosome pair 21, a subtelocentric chromosome with a large band of repetitive DNA on the short arm. In the H3D0474 strain, the construct was found at telomeric sites on the long arms of three metacentric chromosomes that appear to represent one pair of homologous chromosomes and one chromosome containing the homeologous long arm (recently duplicated chromosome arm) corresponding to the long arm of the first pair. This suggests transfer of the construct may have occurred by homologous and homeologous crossing over. All of the constructs incorporated at restricted sites characterized by the presence of tandem DNA repeats.


Asunto(s)
Centrómero/genética , Hormona del Crecimiento/genética , Mutagénesis Insercional/métodos , Oncorhynchus kisutch/genética , Telómero/genética , Animales , Animales Modificados Genéticamente , Cromosomas , Marcación de Gen/métodos , Hibridación Fluorescente in Situ , Mutagénesis Insercional/fisiología
8.
BMC Genet ; 10: 46, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19689812

RESUMEN

BACKGROUND: Most teleost species, especially freshwater groups such as the Esocidae which are the closest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48-52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication, its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96-104 seen in extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids as it has 72-74 chromosome arms and its karyotype includes 12 pairs of large acrocentric chromosomes, which appear to be the result of tandem fusions. The purpose of this study was to integrate the Atlantic salmon's linkage map and karyotype and to compare the chromosome map with that of rainbow trout. RESULTS: The Atlantic salmon genetic linkage groups were assigned to specific chromosomes in the European subspecies using fluorescence in situ hybridization with BAC probes containing genetic markers mapped to each linkage group. The genetic linkage groups were larger for metacentric chromosomes compared to acrocentric chromosomes of similar size. Comparison of the Atlantic salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout. CONCLUSION: It had been suggested that some of the large acrocentric chromosomes in Atlantic salmon are the result of tandem fusions, and that the small blocks of repetitive DNA in the middle of the arms represent the sites of chromosome fusions. The finding that the chromosomal regions on either side of the blocks of repetitive DNA within the larger acrocentric chromosomes correspond to different rainbow trout chromosome arms provides support for this hypothesis.


Asunto(s)
Ligamiento Genético , Oncorhynchus mykiss/genética , Salmo salar/genética , Sintenía , Animales , Mapeo Cromosómico , Cromosomas/genética , Hibridación Genómica Comparativa , Evolución Molecular , Femenino , Marcadores Genéticos , Cariotipificación , Masculino , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
9.
BMC Genomics ; 9: 557, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19032764

RESUMEN

BACKGROUND: Comparative genomic studies suggest that the modern day assemblage of ray-finned fishes have descended from an ancestral grouping of fishes that possessed 12-13 linkage groups. All jawed vertebrates are postulated to have experienced two whole genome duplications (WGD) in their ancestry (2R duplication). Salmonids have experienced one additional WGD (4R duplication event) compared to most extant teleosts which underwent a further 3R WGD compared to other vertebrates. We describe the organization of the 4R chromosomal segments of the proto-ray-finned fish karyotype in Atlantic salmon and rainbow trout based upon their comparative syntenies with two model species of 3R ray-finned fishes. RESULTS: Evidence is presented for the retention of large whole-arm affinities between the ancestral linkage groups of the ray-finned fishes, and the 50 homeologous chromosomal segments in Atlantic salmon and rainbow trout. In the comparisons between the two salmonid species, there is also evidence for the retention of large whole-arm homeologous affinities that are associated with the retention of duplicated markers. Five of the 7 pairs of chromosomal arm regions expressing the highest level of duplicate gene expression in rainbow trout share homologous synteny to the 5 pairs of homeologs with the greatest duplicate gene expression in Atlantic salmon. These regions are derived from proto-Actinopterygian linkage groups B, C, E, J and K. CONCLUSION: Two chromosome arms in Danio rerio and Oryzias latipes (descendants of the 3R duplication) can, in most instances be related to at least 4 whole or partial chromosomal arms in the salmonid species. Multiple arm assignments in the two salmonid species do not clearly support a 13 proto-linkage group model, and suggest that a 12 proto-linkage group arrangement (i.e., a separate single chromosome duplication and ancestral fusion/fissions/recombination within the putative G/H/I groupings) may have occurred in the more basal soft-rayed fishes. We also found evidence supporting the model that ancestral linkage group M underwent a single chromosome duplication following the 3R duplication. In the salmonids, the M ancestral linkage groups are localized to 5 whole arm, and 3 partial arm regions (i.e., 6 whole arm regions expected). Thus, 3 distinct ancestral linkage groups are postulated to have existed in the G/H and M lineage chromosomes in the ancestor of the salmonids.


Asunto(s)
Cromosomas/genética , Genoma , Oncorhynchus mykiss/genética , Salmo salar/genética , Animales , Mapeo Cromosómico , Elementos Transponibles de ADN , Evolución Molecular , Duplicación de Gen , Sintenía , Pez Cebra/genética
10.
Dev Comp Immunol ; 32(3): 204-12, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17604101

RESUMEN

The complete TCR alpha/delta locus of Atlantic salmon (Salmo salar) has been characterized and annotated. In the 900 kb TCR alpha/delta locus, 292 Valpha/delta segments and 123 Jalpha/delta segments were identified. Of these, 128 Valpha/delta, 113 Jalpha, and a Jdelta segment appeared to be functional as they lacked frame shifts or stop codons. This represents the largest repertoire of Valpha/delta and Jalpha segments of any organism to date. The 128 functional Valpha/delta segments could be grouped into 29 subgroups based upon 70% nucleotide similarity. Expression data confirmed the usage of the diverse repertoire found at the genomic level. At least 99 Valpha, 13 Vdelta 86 Jalpha, 1 Jdelta, and 2 Ddelta segments were used in TCR alpha or delta transcription, and 652 unique genes were identified from a sample of 759 TCRalpha cDNA clones. Cumulatively, the genomic and expression data suggest that the Atlantic salmon T-cell receptor has enormous capacity to recognize a wide diversity of antigens.


Asunto(s)
Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T/genética , Salmo salar/genética , Alelos , Animales , Secuencia de Bases , Regiones Determinantes de Complementariedad/genética , ADN Complementario/química , ADN Complementario/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Orden Génico , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Genes Codificadores de la Cadena gamma de los Receptores de Linfocito T/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmo salar/inmunología , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
11.
BMC Genomics ; 8: 251, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17651474

RESUMEN

BACKGROUND: We have previously identified associations between major histocompatibility complex (MHC) class I and resistance towards bacterial and viral pathogens in Atlantic salmon. To evaluate if only MHC or also closely linked genes contributed to the observed resistance we ventured into sequencing of the duplicated MHC class I regions of Atlantic salmon. RESULTS: Nine BACs covering more than 500 kb of the two duplicated MHC class I regions of Atlantic salmon were sequenced and the gene organizations characterized. Both regions contained the proteasome components PSMB8, PSMB9, PSMB9-like and PSMB10 in addition to the transporter for antigen processing TAP2, as well as genes for KIFC1, ZBTB22, DAXX, TAPBP, BRD2, COL11A2, RXRB and SLC39A7. The IA region contained the recently reported MHC class I Sasa-ULA locus residing approximately 50 kb upstream of the major Sasa-UBA locus. The duplicated class IB region contained an MHC class I locus resembling the rainbow trout UCA locus, but although transcribed it was a pseudogene. No other MHC class I-like genes were detected in the two duplicated regions. Two allelic BACs spanning the UBA locus had 99.2% identity over 125 kb, while the IA region showed 82.5% identity over 136 kb to the IB region. The Atlantic salmon IB region had an insert of 220 kb in comparison to the IA region containing three chitin synthase genes. CONCLUSION: We have characterized the gene organization of more than 500 kb of the two duplicated MHC class I regions in Atlantic salmon. Although Atlantic salmon and rainbow trout are closely related, the gene organization of their IB region has undergone extensive gene rearrangements. The Atlantic salmon has only one class I UCA pseudogene in the IB region while trout contains the four MHC UCA, UDA, UEA and UFA class I loci. The large differences in gene content and most likely function of the salmon and trout class IB region clearly argues that sequencing of salmon will not necessarily provide information relevant for trout and vice versa.


Asunto(s)
Genes MHC Clase I , Salmo salar/genética , Secuencia de Aminoácidos , Animales , Presentación de Antígeno/genética , Evolución Molecular , Duplicación de Gen , Genoma , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Alineación de Secuencia
12.
Genetics ; 174(3): 1661-70, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16951085

RESUMEN

The rainbow trout genetic linkage groups have been assigned to specific chromosomes in the OSU (2N=60) strain using fluorescence in situ hybridization (FISH) with BAC probes containing genes mapped to each linkage group. There was a rough correlation between chromosome size and size of the genetic linkage map in centimorgans for the genetic maps based on recombination from the female parent. Chromosome size and structure have a major impact on the female:male recombination ratio, which is much higher (up to 10:1 near the centromeres) on the larger metacentric chromosomes compared to smaller acrocentric chromosomes. Eighty percent of the BAC clones containing duplicate genes mapped to a single chromosomal location, suggesting that diploidization resulted in substantial divergence of intergenic regions. The BAC clones that hybridized to both duplicate loci were usually located in the distal portion of the chromosome. Duplicate genes were almost always found at a similar location on the chromosome arm of two different chromosome pairs, suggesting that most of the chromosome rearrangements following tetraploidization were centric fusions and did not involve homeologous chromosomes. The set of BACs compiled for this research will be especially useful in construction of genome maps and identification of QTL for important traits in other salmonid fishes.


Asunto(s)
Cromosomas , Ligamiento Genético , Oncorhynchus mykiss/genética , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Sondas de ADN , ADN Intergénico , Diploidia , Femenino , Genes Duplicados , Marcadores Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Repeticiones de Microsatélite , Recombinación Genética
13.
Genome Biol Evol ; 7(7): 1972-87, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26112966

RESUMEN

Salmonids present an excellent model for studying evolution of young sex-chromosomes. Within the genus, Oncorhynchus, at least six independent sex-chromosome pairs have evolved, many unique to individual species. This variation results from the movement of the sex-determining gene, sdY, throughout the salmonid genome. While sdY is known to define sexual differentiation in salmonids, the mechanism of its movement throughout the genome has remained elusive due to high frequencies of repetitive elements, rDNA sequences, and transposons surrounding the sex-determining regions (SDR). Despite these difficulties, bacterial artificial chromosome (BAC) library clones from both rainbow trout and Atlantic salmon containing the sdY region have been reported. Here, we report the sequences for these BACs as well as the extended sequence for the known SDR in Chinook gained through genome walking methods. Comparative analysis allowed us to study the overlapping SDRs from three unique salmonid Y chromosomes to define the specific content, size, and variation present between the species. We found approximately 4.1 kb of orthologous sequence common to all three species, which contains the genetic content necessary for masculinization. The regions contain transposable elements that may be responsible for the translocations of the SDR throughout salmonid genomes and we examine potential mechanistic roles of each one.


Asunto(s)
Salmonidae/genética , Procesos de Determinación del Sexo , Cromosoma Y , Animales , Proteínas de Peces/genética , Masculino , Datos de Secuencia Molecular , Oncorhynchus/genética , Oncorhynchus mykiss/genética , ADN Polimerasa Dirigida por ARN/genética , Retroelementos , Salmo salar/genética
14.
Mar Biotechnol (NY) ; 5(3): 270-8, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14502399

RESUMEN

This study compares the genotypic information provided by reference strand-mediated conformational analysis and single-stranded confirmational polymorphism (SSCP) analysis for the major histocompatibility complex (MHC) II locus in lake trout. For this study 80 wild-caught animals from the Apostle Islands of Lake Superior were genotyped using both RSCA and SSCP analysis. Their genotypes were recorded using both methods and compared. The genotypic information provided by the 2 methods was essentially the same although some inconsistencies were observed. Both methods detected approximately 65 genotypes, and both were able to distinguish heterozygous and homozygous animals. The analyses determined that only approximately 20% of alleles were shared between 2 morphologically different populations within the sample set, and identified the dominant alleles. SSCP analysis was quicker, simple, and more robust than RSCA. SSCP analysis using fluorescence technologies could be the method of choice for future genotypic analysis of the MHC II locus in salmonids.


Asunto(s)
Genes MHC Clase II/genética , Trucha/genética , Animales , Cartilla de ADN , ADN Recombinante/genética , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes , Frecuencia de los Genes , Genotipo , Great Lakes Region , Polimorfismo Conformacional Retorcido-Simple , Análisis de Secuencia de ADN
15.
In Vitro Cell Dev Biol Anim ; 39(1-2): 29-35, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12892524

RESUMEN

The genus Morone is an important one for U.S. aquaculture, but there has been no available cell line from this genus. We report here a cell line (the WBE line) derived from white bass embryos that has been grown for more than 80 passages over 21 mo in Dulbecco modified Eagle medium supplemented with fetal bovine serum. The WBE line showed epithelial features with positive immunohistochemical staining for cytokeratin and intercellular junctions when observed by electron microscopy. The doubling time, transformation characteristics, response to cryopreservation, and karyotype were determined. The WBE line was also tested by polymerase chain reaction to verify the species of origin and to screen for mycoplasma infection. This epithelial cell line may prove useful for the study of host-pathogen interactions that occur at the epithelial surface in this commercially important fish species.


Asunto(s)
Lubina/embriología , Línea Celular , Embrión no Mamífero/citología , Células Epiteliales , Animales , Bovinos , Técnicas de Cultivo de Célula/métodos , División Celular , Tamaño de la Célula , Cromosomas , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura
16.
G3 (Bethesda) ; 3(12): 2289-95, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24170739

RESUMEN

The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58-64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Salmón/genética , Animales , Cromosomas , Cromosomas Artificiales Bacterianos , Femenino , Marcadores Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Oncorhynchus mykiss/genética , Sintenía
17.
G3 (Bethesda) ; 3(12): 2281-8, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24170738

RESUMEN

Comparative genome mapping can rapidly facilitate the transfer of DNA sequence information from a well-characterized species to one that is less described. Chromosome arm numbers are conserved between members of the teleost family Salmonidae, order Salmoniformes, permitting rapid alignment of large syntenic blocks of DNA between members of the group. However, extensive Robertsonian rearrangements after an ancestral whole-genome duplication event has resulted in different chromosome numbers across Salmonid taxa. In anticipation of the rapid application of genomic data across members of the Pacific salmon genus Oncorhynchus, we mapped the genome of Chinook salmon (O. tshawytscha) by using 361 microsatellite loci and compared linkage groups to those already derived for a well-characterized species rainbow trout (O. mykiss). The Chinook salmon female map length was 1526 cM, the male map 733 cM, and the consensus map between the two sexes was 2206 cM. The average female to male recombination ratio was 5.43 (range 1-42.8 across all pairwise marker comparisons). We detected 34 linkage groups that corresponded with all chromosome arms mapped with homologous loci in rainbow trout and inferred that 16 represented metacentric chromosomes and 18 represented acrocentric chromosomes. Up to 13 chromosomes were conserved between the two species, suggesting that their structure precedes the divergence between Chinook salmon and rainbow trout. However, marker order differed in one of these linkage groups. The remaining linkage group structures reflected independent Robertsonian chromosomal arrangements, possibly after divergence. The putative linkage group homologies presented here are expected to facilitate future DNA sequencing efforts in Chinook salmon.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Repeticiones de Microsatélite , Oncorhynchus mykiss/genética , Salmón/genética , Animales , Cromosomas , Femenino , Masculino , Recombinación Genética , Duplicaciones Segmentarias en el Genoma , Sintenía
18.
Int J Genomics ; 2013: 261730, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671840

RESUMEN

We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

19.
Mol Ecol Resour ; 11(2): 382-5, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21429149

RESUMEN

A suite of 12 subspecies and species-specific single nucleotide polymorphism (species-specific SNP) markers was developed to distinguish rainbow trout (RT) Oncorhynchus mykiss from the four major subspecies of cutthroat trout: westslope cutthroat trout (WCT) Oncorhynchus clarki lewisi, Yellowstone cutthroat trout (YCT) Oncorhynchus clarki bouvieri, coastal cutthroat trout (CCT) Oncorhynchus clarki clarki, Lahontan cutthroat trout (LCT) Oncorhynchus clarki henshawi, and their hybrids. Several of the markers were linked to help strengthen hybrid determinations, and sex-specific species-specific SNP assays were also developed.


Asunto(s)
Oncorhynchus/clasificación , Oncorhynchus/genética , Polimorfismo de Nucleótido Simple , Animales , Femenino , Marcadores Genéticos , Masculino , Datos de Secuencia Molecular , Oncorhynchus mykiss/clasificación , Oncorhynchus mykiss/genética , Especificidad de la Especie
20.
Mar Genomics ; 2(3-4): 193-200, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21798188

RESUMEN

Gene and genome duplications are considered to be driving forces of evolution. The relatively recent genome duplication in the common ancestor of salmonids makes this group of fish an excellent system for studying the re-diploidization process and the fates of duplicate genes. We characterized the structure and genome organization of the intestinal fatty acid binding protein (fabp2) genes in Atlantic salmon as a means of understanding the evolutionary fates of members of this protein family in teleosts. A survey of EST databases identified three unique salmonid fabp2 transcripts (fabp2aI, fabp2aII and fabp2b) compared to one transcript in zebrafish. We screened the CHORI-214 Atlantic salmon BAC library and identified BACs containing each of the three fabp2 genes. Physical mapping, genetic mapping and fluorescence in situ hybridization of Atlantic salmon chromosomes revealed that Atlantic salmon fabp2aI, fabp2aII and fabp2b correspond to separate genetic loci that reside on different chromosomes. Comparative genomic analyses indicated that these genes are related to one another by two genome duplications and a gene loss. The first genome duplication occurred in the common ancestor of all teleosts, giving rise to fabp2a and fabp2b, and the second in the common ancestor of salmonids, producing fabp2aI, fabp2aII, fabp2bI and fabp2bII. A subsequent loss of fabp2bI or fabp2bII gave the complement of fabp2 genes seen in Atlantic salmon today. There is also evidence for independent losses of fabp2b genes in zebrafish and tetraodon. Although there is no evidence for partitioning of tissue expression of fabp2 genes (i.e., sub-functionalization) in Atlantic salmon, the pattern of amino acid substitutions in Atlantic salmon and rainbow trout fabp2aI and fabp2aII suggests that neo-functionalization is occurring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA