Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 38(12): 3039-3049, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29459371

RESUMEN

The brainstem preBötzinger complex (preBötC) generates the inspiratory rhythm for breathing. The onset of neural activity that precipitates the inspiratory phase of the respiratory cycle may depend on the activity of type-1 preBötC neurons, which exhibit a transient outward K+ current, IA Inspiratory rhythm generation can be studied ex vivo because the preBötC remains rhythmically active in vitro, both in acute brainstem slices and organotypic cultures. Advantageous optical conditions in organotypic slice cultures from newborn mice of either sex allowed us to investigate how IA impacts Ca2+ transients occurring in the dendrites of rhythmically active type-1 preBötC neurons. The amplitude of dendritic Ca2+ transients evoked via voltage increases originating from the soma significantly increased after an IA antagonist, 4-aminopyridine (4-AP), was applied to the perfusion bath or to local dendritic regions. Similarly, glutamate-evoked postsynaptic depolarizations recorded at the soma increased in amplitude when 4-AP was coapplied with glutamate at distal dendritic locations. We conclude that IA is expressed on type-1 preBötC neuron dendrites. We propose that IA filters synaptic input, shunting sparse excitation, while enabling temporally summated events to pass more readily as a result of IA inactivation. Dendritic IA in rhythmically active preBötC neurons could thus ensure that inspiratory motor activity does not occur until excitatory synaptic drive is synchronized and well coordinated among cellular constituents of the preBötC during inspiratory rhythmogenesis. The biophysical properties of dendritic IA might thus promote robustness and regularity of breathing rhythms.SIGNIFICANCE STATEMENT Brainstem neurons in the preBötC generate the oscillatory activity that underlies breathing. PreBötC neurons express voltage-dependent currents that can influence inspiratory activity, among which is a transient potassium current (IA) previously identified in a rhythmogenic excitatory subset of type-1 preBötC neurons. We sought to determine whether IA is expressed in the dendrites of preBötC. We found that dendrites of type-1 preBötC neurons indeed express IA, which may aid in shunting sparse non-summating synaptic inputs, while enabling strong summating excitatory inputs to readily pass and thus influence somatic membrane potential trajectory. The subcellular distribution of IA in rhythmically active neurons of the preBötC may thus be critical for producing well coordinated ensemble activity during inspiratory burst formation.


Asunto(s)
Dendritas/metabolismo , Potenciales de la Membrana/fisiología , Potasio/metabolismo , Respiración , Centro Respiratorio/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Neuronas , Técnicas de Cultivo de Órganos
2.
J Neurophysiol ; 115(2): 1063-70, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655824

RESUMEN

Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7-43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels.


Asunto(s)
Tronco Encefálico/citología , Señalización del Calcio , Generadores de Patrones Centrales/citología , Técnicas de Cultivo de Tejidos/métodos , Potenciales de Acción , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Respiración de la Célula , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/fisiología
3.
J Neurochem ; 129(4): 649-62, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24350810

RESUMEN

Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein-regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth-associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.


Asunto(s)
Acetilcolina/fisiología , Región CA3 Hipocampal/citología , Conos de Crecimiento/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Bungarotoxinas/farmacología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/embriología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Colina/farmacología , Femenino , Proteína GAP-43/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Conos de Crecimiento/ultraestructura , Péptidos y Proteínas de Señalización Intercelular , Masculino , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Toxina del Pertussis/farmacología , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Venenos de Avispas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Receptor Nicotínico de Acetilcolina alfa 7/genética , Proteína de Unión al GTP cdc42/fisiología
4.
STAR Protoc ; 5(1): 102908, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461411

RESUMEN

Processing dissociated cells for transcriptomics is challenging when targeting small brain structures, like brainstem nuclei, where cell yield may be low. Here, we present a protocol for dissecting, dissociating, and cryopreserving mouse brainstem that allows asynchronous sample collection and downstream processing of cells obtained from brainstem tissue in neonatal mice. Although we demonstrate this protocol with the isolated preBötzinger complex and downstream SmartSeq3 cDNA library preparation, it could be readily adapted for other brainstem areas and library preparation approaches.


Asunto(s)
Tronco Encefálico , Análisis de Expresión Génica de una Sola Célula , Ratones , Animales , Núcleo Celular , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes
5.
Front Neural Circuits ; 16: 826497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669453

RESUMEN

Inflammation in infants can cause respiratory dysfunction and is potentially life-threatening. Prostaglandin E2 (PGE2) is released during inflammatory events and perturbs breathing behavior in vivo. Here we study the effects of PGE2 on inspiratory motor rhythm generated by the preBötzinger complex (preBötC). We measured the concentration dependence of PGE2 (1 nM-1 µM) on inspiratory-related motor output in rhythmic medullary slice preparations. Low concentrations (1-10 nM) of PGE2 increased the duration of the inspiratory burst period, while higher concentrations (1 µM) decreased the burst period duration. Using specific pharmacology for prostanoid receptors (EP1-4R, FPR, and DP2R), we determined that coactivation of both EP2R and EP3R is necessary for PGE2 to modulate the inspiratory burst period. Additionally, biased activation of EP3 receptors lengthened the duration of the inspiratory burst period, while biased activation of EP2 receptors shortened the burst period. To help delineate which cell populations are affected by exposure to PGE2, we analyzed single-cell RNA-Seq data derived from preBötC cells. Transcripts encoding for EP2R (Ptger2) were differentially expressed in a cluster of excitatory neurons putatively located in the preBötC. A separate cluster of mixed inhibitory neurons differentially expressed EP3R (Ptger3). Our data provide evidence that EP2 and EP3 receptors increase the duration of the inspiratory burst period at 1-10 nM PGE2 and decrease the burst period duration at 1 µM. Further, the biphasic dose response likely results from differences in receptor binding affinity among prostanoid receptors.


Asunto(s)
Dinoprostona , Respiración , Animales , Dinoprostona/farmacología , Humanos , Bulbo Raquídeo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA