Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134876

RESUMEN

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Expansión de Repetición de Trinucleótido , Metilación de ADN , Mutación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
2.
Cell ; 185(15): 2690-2707, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868274

RESUMEN

Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin. Using primarily mammalian model systems, we contrast mechanisms governing H3K9me3-mediated heterochromatinization of the repetitive genome and highlight emerging links between repetitive elements and chromatin folding.


Asunto(s)
Heterocromatina , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Genoma Humano , Heterocromatina/genética , Humanos , Mamíferos , Secuencias Repetitivas de Ácidos Nucleicos/genética
3.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173918

RESUMEN

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Asunto(s)
Cromatina/genética , Repeticiones de Microsatélite/fisiología , Expansión de Repetición de Trinucleótido/fisiología , Adulto , Encéfalo/citología , Encéfalo/patología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/fisiología , Línea Celular , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Islas de CpG/genética , Islas de CpG/fisiología , ADN/genética , Enfermedad/etiología , Enfermedad/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Expansión de Repetición de Trinucleótido/genética
4.
Mol Cell ; 83(17): 3064-3079.e5, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37552993

RESUMEN

CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.


Asunto(s)
G-Cuádruplex , Animales , Ratones , Estructuras R-Loop , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Genómica , Sitios de Unión
5.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37419111

RESUMEN

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Asunto(s)
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
6.
Nature ; 620(7972): 209-217, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438531

RESUMEN

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Asunto(s)
Cromatina , Posicionamiento de Cromosoma , Cromosomas Humanos , Genoma Humano , Glucógeno Sintasa Quinasas , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual , Humanos , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamiento de Cromosoma/efectos de los fármacos , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , ADN/análisis , ADN/metabolismo , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Glucógeno Sintasa Quinasas/deficiencia , Glucógeno Sintasa Quinasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Interfase , Reproducibilidad de los Resultados , ARN/análisis , ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual/métodos , Cohesinas
7.
Mol Cell ; 81(6): 1130-1132, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33740473

RESUMEN

Payne et al. (2020) combine in situ imaging and ex situ sequencing via spatially resolved unique molecular barcodes to query higher-order genome folding patterns in intact single nuclei from mouse embryos and human fibroblasts.


Asunto(s)
Genoma , Animales , Secuencia de Bases , Ratones
8.
Cell ; 153(6): 1281-95, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23706625

RESUMEN

Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that undergo marked reorganization at the submegabase scale during differentiation. Distinct combinations of CCCTC-binding factor (CTCF), Mediator, and cohesin show widespread enrichment in chromatin interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that might form the topological basis for invariant subdomains. Conversely, Mediator/cohesin bridge short-range enhancer-promoter interactions within and between larger subdomains. Knockdown of Smc1 or Med12 in embryonic stem cells results in disruption of spatial architecture and downregulation of genes found in cohesin-mediated interactions. We conclude that cell-type-specific chromatin organization occurs at the submegabase scale and that architectural proteins shape the genome in hierarchical length scales.


Asunto(s)
Linaje de la Célula , Cromatina/metabolismo , Genoma , Proteínas Nucleares/análisis , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/química , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Ratones , Células-Madre Neurales/química , Células-Madre Neurales/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Cohesinas
9.
Nature ; 606(7915): 812-819, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676475

RESUMEN

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Humanos , Origen de Réplica/genética , Fase S , Cohesinas
10.
Nature ; 576(7785): 158-162, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31776509

RESUMEN

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.


Asunto(s)
Cromatina , Fase G1 , Mitosis , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ratones , Cohesinas
11.
Mol Cell ; 67(6): 901-903, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938095

RESUMEN

The mechanisms by which 3D chromatin looping interactions mediate cell type-specific gene expression are an active area of investigation. In this issue of Molecular Cell, Phanstiel et al. (2017) annotate five classes of loops during macrophage development and predict candidate factors involved in their regulation.


Asunto(s)
Cromatina , Macrófagos , Humanos
12.
Mol Cell ; 66(1): 102-116.e7, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388437

RESUMEN

Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is dispensable for CTCF occupancy. Disruption of a CTCF/BRD2-occupied element positioned between two unrelated genes enables regulatory influence to spread from one gene to another, suggesting that CTCF and BRD2 form a transcriptional boundary. Accordingly, single-molecule mRNA fluorescence in situ hybridization (FISH) reveals that, upon site-specific CTCF disruption or BRD2 depletion, expression of the two genes becomes increasingly correlated. HiC shows that BRD2 depletion weakens boundaries co-occupied by CTCF and BRD2, but not those that lack BRD2. These findings indicate that BRD2 supports boundary activity, and they raise the possibility that pharmacologic BET inhibitors can influence gene expression in part by perturbing domain boundary function.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Sistemas CRISPR-Cas , Línea Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Edición Génica/métodos , Hibridación Fluorescente in Situ , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Imagen Individual de Molécula/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
13.
Nat Methods ; 16(7): 633-639, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235883

RESUMEN

Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.


Asunto(s)
Regulación de la Expresión Génica , Ingeniería de Proteínas , Animales , Proteínas Portadoras/genética , Células Cultivadas , Proteínas de Unión al ADN , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Luz , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/genética
14.
Nat Methods ; 15(2): 119-122, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29334377

RESUMEN

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs and looping interactions. Here, we describe 3DNetMod, a graph theory-based method for sensitive and accurate detection of chromatin domains across length scales in Hi-C data. We identify nested, partially overlapping TADs and subTADs genome wide by optimizing network modularity and varying a single resolution parameter. 3DNetMod can be applied broadly to understand genome reconfiguration in development and disease.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Biología Computacional/métodos , Gráficos por Computador , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
15.
Mol Cell ; 50(4): 461-74, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706817

RESUMEN

A growing body of evidence suggests that insulators have a primary role in orchestrating the topological arrangement of higher-order chromatin architecture. Insulator-mediated long-range interactions can influence the epigenetic status of the genome and, in certain contexts, may have important effects on gene expression. Here we discuss higher-order chromatin organization as a unifying mechanism for diverse insulator actions across the genome.


Asunto(s)
Cromatina/genética , Regulación de la Expresión Génica , Genoma/genética , Elementos Aisladores/genética , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC , Cromatina/metabolismo , Humanos , Modelos Genéticos , Unión Proteica , Proteínas Represoras/metabolismo
16.
Genome Res ; 27(7): 1139-1152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536180

RESUMEN

CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción YY1/metabolismo , Línea Celular , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Células Madre Embrionarias Humanas/citología , Humanos , Células-Madre Neurales/citología
17.
Methods ; 142: 39-46, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29772275

RESUMEN

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs, and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C can generate genome-wide maps of looping interactions but is intractable for high-throughput comparison of loops across multiple conditions due to the enormous number of reads (>6 Billion) required per library. Here, we describe 5C-ID, a new version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a double alternating primer design. We demonstrate that 5C-ID produces higher-resolution 3D genome folding maps with reduced spatial noise using markedly lower cell numbers than canonical 5C. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas/genética , Cartilla de ADN/genética , Genoma/genética , Conformación de Ácido Nucleico , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Cromosomas/química , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
18.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948824

RESUMEN

Sequential Oligopaints DNA FISH is an imaging technique that measures higher-order genome folding at single-allele resolution via multiplexed, probe-based tracing. Currently there is a paucity of algorithms to identify 3D genome features in sequential Oligopaints data. Here, we present FISHnet, a graph theory method based on optimization of network modularity to detect chromatin domains and boundaries in pairwise distance matrices. FISHnet uncovers cell type-specific domain-like folding patterns on single alleles, thus enabling future studies aiming to elucidate the role for single-cell folding variation on genome function.

19.
Cell Genom ; : 100606, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38991604

RESUMEN

DNA is folded into higher-order structures that shape and are shaped by genome function. The role of long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNA Pol II) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitor cells (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNA Pol II initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops or promoter-promoter loops or when unlooped. Genes transitioning from repression to RNA Pol II initiation exhibit a slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNA Pol II-mediated elongation during neural cell fate transitions.

20.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746155

RESUMEN

More than 60 human disorders have been linked to unstable expansion of short tandem repeat (STR) tracts. STR length and the extent of DNA methylation is linked to disease pathology and can be mosaic in a cell type-specific manner in several repeat expansion disorders. Mosaic phenomenon have been difficult to study to date due to technical bias intrinsic to repeat sequences and the need for multi-modal measurements at single-allele resolution. Nanopore long-read sequencing accurately measures STR length and DNA methylation in the same single molecule but is cost prohibitive for studies assessing a target locus across multiple experimental conditions or patient samples. Here, we describe MASTR-seq, M ultiplexed A nalysis of S hort T andem R epeats, for cost-effective, high-throughput, accurate, multi-modal measurements of DNA methylation and STR genotype at single-allele resolution. MASTR-seq couples long-read sequencing, Cas9-mediated target enrichment, and PCR-free multiplexed barcoding to achieve a >ten-fold increase in on-target read mapping for 8-12 pooled samples in a single MinION flow cell. We provide a detailed experimental protocol and computational tools and present evidence that MASTR-seq quantifies tract length and DNA methylation status for CGG and CAG STR loci in normal-length and mutation-length human cell lines. The MASTR-seq protocol takes approximately eight days for experiments and one additional day for data processing and analyses. Key points: We provide a protocol for MASTR-seq: M ultiplexed A nalysis of S hort T andem R epeats using Cas9-mediated target enrichment and PCR-free, multiplexed nanopore sequencing. MASTR-seq achieves a >10-fold increase in on-target read proportion for highly repetitive, technically inaccessible regions of the genome relevant for human health and disease.MASTR-seq allows for high-throughput, efficient, accurate, and cost-effective measurement of STR length and DNA methylation in the same single allele for up to 8-12 samples in parallel in one Nanopore MinION flow cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA