Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Blood ; 142(19): 1658-1671, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37624904

RESUMEN

Iron is an essential nutrient required by all cells but used primarily for red blood cell production. Because humans have no effective mechanism for ridding the body of excess iron, the absorption of dietary iron must be precisely regulated. The critical site of regulation is the transfer of iron from the absorptive enterocyte to the portal circulation via the sole iron efflux transporter, ferroportin. Here, we report that poly(rC)-binding protein 1 (PCBP1), the major cytosolic iron chaperone, is necessary for the regulation of iron flux through ferroportin in the intestine of mice. Mice lacking PCBP1 in the intestinal epithelium exhibit low levels of enterocyte iron, poor retention of dietary iron in enterocyte ferritin, and excess efflux of iron through ferroportin. Excess iron efflux occurred despite lower levels of ferroportin protein in enterocytes and upregulation of the iron regulatory hormone hepcidin. PCBP1 deletion and the resulting unregulated dietary iron absorption led to poor growth, severe anemia on a low-iron diet, and liver oxidative stress with iron loading on a high-iron diet. Ex vivo culture of PCBP1-depleted enteroids demonstrated no defects in hepcidin-mediated ferroportin turnover. However, measurement of kinetically labile iron pools in enteroids competent or blocked for iron efflux indicated that PCBP1 functioned to bind and retain cytosolic iron and limit its availability for ferroportin-mediated efflux. Thus, PCBP1 coordinates enterocyte iron and reduces the concentration of unchaperoned "free" iron to a low level that is necessary for hepcidin-mediated regulation of ferroportin activity.


Asunto(s)
Proteínas de Transporte de Catión , Sobrecarga de Hierro , Humanos , Ratones , Animales , Hierro/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro de la Dieta/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Intestinos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161287

RESUMEN

Poly(rC)-binding protein (PCBP1) is a multifunctional adaptor protein that can coordinate single-stranded nucleic acids and iron-glutathione complexes, altering the processing and transfer of these ligands through interactions with other proteins. Multiple phenotypes are ascribed to cells lacking PCBP1, but the relative contribution of RNA, DNA, or iron chaperone activity is not consistently clear. Here, we report the identification of amino acid residues required for iron coordination on each structural domain of PCBP1 and confirm the requirement of iron coordination for binding target proteins BolA2 and ferritin. We further construct PCBP1 variants that lack either nucleic acid- or iron-binding activity and examine their functions in human cells and mouse tissues depleted of endogenous PCBP1. We find that these activities are separable and independently confer essential functions. While iron chaperone activity controls cell cycle progression and suppression of DNA damage, RNA/DNA-binding activity maintains cell viability in both cultured cell and mouse models. The coevolution of RNA/DNA binding and iron chaperone activities on a single protein may prove advantageous for nucleic acid processing that depends on enzymes with iron cofactors.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hierro/metabolismo , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular , Muerte Celular , Supervivencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Hígado Graso/metabolismo , Hígado Graso/patología , Ferritinas/metabolismo , Glutatión/metabolismo , Células HEK293 , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Oligonucleótidos/metabolismo , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
3.
J Nutr ; 153(7): 1866-1876, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37127137

RESUMEN

BACKGROUND: Vitamin E (vit E) is an essential nutrient that functions as a lipophilic antioxidant and is used clinically to treat nonalcoholic fatty liver disease, where it suppresses oxidative damage and impedes the progression of steatosis and fibrosis. Mice lacking a critical liver iron-trafficking protein also manifest steatosis because of iron-mediated oxidative damage and are protected from liver disease by oral vit E supplements. OBJECTIVES: We aimed to examine the role of dietary vit E supplementation in modulating iron-sensing regulatory systems and nonheme iron levels in mouse liver. METHODS: C57Bl/6 male mice, aged 6 wk, were fed purified diets containing normal amounts of iron and either control (45 mg/kg) or elevated (450 mg/kg) levels of 2R-α-tocopherol (vit E) for 18 d. Mouse plasma and liver were analyzed for nonheme iron, levels and activity of iron homeostatic proteins, and markers of oxidative stress. We compared means ± SD for iron and oxidative stress parameters between mice fed the control diet and those fed the vit E diet. RESULTS: The Vit E-fed mice exhibited lower levels of liver nonheme iron (38% reduction, P < 0.0001) and ferritin (74% reduction, P < 0.01) than control-fed mice. The levels of liver mRNA for transferrin receptor 1 and divalent metal transporter 1 were reduced to 42% and 57% of the control, respectively. The mRNA levels for targets of nuclear factor erythroid 2-related factor (Nrf2), a major regulator of the oxidative stress response and iron-responsive genes, were also suppressed in vit E livers. Hepcidin, an iron regulatory hormone, levels were lower in the plasma (P < 0.05), and ferroportin (FPN), the iron exporter regulated by hepcidin, was expressed at higher levels in the liver (P < 0.05). CONCLUSIONS: Oral vit E supplementation in mice can lead to depletion of liver iron stores by suppressing the iron- and redox-sensing transcription factor Nrf2, leading to enhanced iron efflux through liver FPN. Iron depletion may indirectly enhance the antioxidative effects of vit E.


Asunto(s)
Hierro , Vitamina E , Ratones , Masculino , Animales , Hierro/metabolismo , Vitamina E/farmacología , Hepcidinas , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Hígado/metabolismo , Antioxidantes/metabolismo , ARN Mensajero/genética , Ratones Endogámicos C57BL
4.
Am J Hum Genet ; 105(5): 947-958, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31668704

RESUMEN

Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.


Asunto(s)
Anemia/genética , Trastorno Autístico/genética , Duplicación Cromosómica/genética , Cromosomas Humanos Par 16/genética , Homeostasis/genética , Proteínas/genética , Animales , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Genotipo , Heterocigoto , Humanos , Hierro , Masculino , Fenotipo
5.
Hepatology ; 73(3): 1176-1193, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32438524

RESUMEN

BACKGROUND AND AIMS: Iron is essential yet also highly chemically reactive and potentially toxic. The mechanisms that allow cells to use iron safely are not clear; defects in iron management are a causative factor in the cell-death pathway known as ferroptosis. Poly rC binding protein 1 (PCBP1) is a multifunctional protein that serves as a cytosolic iron chaperone, binding and transferring iron to recipient proteins in mammalian cells. Although PCBP1 distributes iron in cells, its role in managing iron in mammalian tissues remains open for study. The liver is highly specialized for iron uptake, utilization, storage, and secretion. APPROACH AND RESULTS: Mice lacking PCBP1 in hepatocytes exhibited defects in liver iron homeostasis with low levels of liver iron, reduced activity of iron enzymes, and misregulation of the cell-autonomous iron regulatory system. These mice spontaneously developed liver disease with hepatic steatosis, inflammation, and degeneration. Transcriptome analysis indicated activation of lipid biosynthetic and oxidative-stress response pathways, including the antiferroptotic mediator, glutathione peroxidase type 4. Although PCBP1-deleted livers were iron deficient, dietary iron supplementation did not prevent steatosis; instead, dietary iron restriction and antioxidant therapy with vitamin E prevented liver disease. PCBP1-deleted hepatocytes exhibited increased labile iron and production of reactive oxygen species (ROS), were hypersensitive to iron and pro-oxidants, and accumulated oxidatively damaged lipids because of the reactivity of unchaperoned iron. CONCLUSIONS: Unchaperoned iron in PCBP1-deleted mouse hepatocytes leads to production of ROS, resulting in lipid peroxidation (LPO) and steatosis in the absence of iron overload. The iron chaperone activity of PCBP1 is therefore critical for limiting the toxicity of cytosolic iron and may be a key factor in preventing the LPO that triggers the ferroptotic cell-death pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hígado Graso/etiología , Compuestos de Hierro/metabolismo , Peroxidación de Lípido , Metalochaperonas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Noqueados , Estrés Oxidativo
6.
Nat Chem Biol ; 15(9): 872-881, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406370

RESUMEN

Hundreds of cellular proteins require iron cofactors for activity, and cells express systems for their assembly and distribution. Molecular details of the cytosolic iron pool used for iron cofactors are lacking, but iron chaperones of the poly(rC)-binding protein (PCBP) family play a key role in ferrous ion distribution. Here we show that, in cells and in vitro, PCBP1 coordinates iron via conserved cysteine and glutamate residues and a molecule of noncovalently bound glutathione (GSH). Proteomics analysis of PCBP1-interacting proteins identified BolA2, which functions, in complex with Glrx3, as a cytosolic [2Fe-2S] cluster chaperone. The Fe-GSH-bound form of PCBP1 complexes with cytosolic BolA2 via a bridging Fe ligand. Biochemical analysis of PCBP1 and BolA2, in cells and in vitro, indicates that PCBP1-Fe-GSH-BolA2 serves as an intermediate complex required for the assembly of [2Fe-2S] clusters on BolA2-Glrx3, thereby linking the ferrous iron and Fe-S distribution systems in cells.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas/metabolismo , Antibacterianos/farmacología , Proteínas Portadoras , Citosol/metabolismo , Proteínas de Unión al ADN , Doxiciclina/farmacología , Compuestos Férricos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Proteínas/genética , Compuestos de Amonio Cuaternario/farmacología , Proteínas de Unión al ARN
8.
Curr Opin Hematol ; 25(3): 183-188, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29461259

RESUMEN

PURPOSE OF REVIEW: Terminal differentiation of erythropoietic progenitors requires the rapid accumulation of large amounts of iron, which is transported to the mitochondria, where it is incorporated into heme. Ferritin is the sole site of iron storage present in the cytosol. Yet the role of iron accumulation into ferritin in the context of red cell development had not been clearly defined. Early studies indicated that at the onset of terminal differentiation, iron initially accumulates in ferritin and precedes heme synthesis. Whether this accumulation is physiologically important for red cell development was unclear until recent studies defined an obligatory pathway of iron flux through ferritin. RECENT FINDINGS: The iron chaperone functions of poly rC-binding protein 1 (PCBP1) and the autophagic cargo receptor for ferritin, nuclear co-activator 4 (NCOA4) are required for the flux of iron through ferritin in developing red cells. In the absence of these functions, iron delivery to mitochondria for heme synthesis is impaired. SUMMARY: The regulated trafficking of iron through ferritin is important for maintaining a consistent flow of iron to mitochondria without releasing potentially damaging redox-active species in the cell. Other components of the iron trafficking machinery are likely to be important in red cell development.


Asunto(s)
Eritrocitos/metabolismo , Eritropoyesis/fisiología , Ferritinas/metabolismo , Hemo/biosíntesis , Hierro/metabolismo , Animales , Citosol/metabolismo , Proteínas de Unión al ADN , Eritrocitos/citología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Coactivadores de Receptor Nuclear/metabolismo , Proteínas de Unión al ARN
9.
J Biol Chem ; 292(31): 12764-12771, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615454

RESUMEN

Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells.


Asunto(s)
Citosol/metabolismo , Ferritinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Animales , Apoenzimas/química , Apoenzimas/metabolismo , Apoferritinas/química , Apoferritinas/metabolismo , Autofagia , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Unión al ADN , Dimerización , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Ferritinas/química , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Proteínas Hierro-Azufre/química , Chaperonas Moleculares/química , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
10.
Blood Cells Mol Dis ; 69: 75-81, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29032941

RESUMEN

Developing red blood cells exhibit multiple, redundant systems for regulating and coordinating the uptake of iron, the synthesis of heme, and the formation of hemoglobin during terminal differentiation. We recently described the roles of poly rC-binding protein (PCBP1) and nuclear coactivator 4 (NCOA4) in mediating the flux of iron through ferritin in developing erythroid cells, with PCBP1, an iron chaperone, delivering iron to ferritin and NCOA4, an autophagic cargo receptor, directing ferritin to the lysosome for degradation and iron release. Ferritin iron flux is critical, as mice lacking these factors develop microcytic anemia. Here we report that these processes are regulated by cellular iron levels in a murine model of ex vivo terminal differentiation. PCBP1 delivers iron to ferritin via a direct protein-protein interaction. This interaction is developmentally regulated, enhanced by iron deprivation, and inhibited by iron excess, both in developing cells and in vitro. NCOA4 activity also exhibited developmental regulation and regulation by cellular iron levels. Excess iron uptake during differentiation triggered lysosomal degradation of NCOA4, which was dependent on the E3 ubiquitin ligase HERC2. Thus, developing red blood cells express a series of proteins that both mediate and regulate the flux of iron to the mitochondria.


Asunto(s)
Células Eritroides/citología , Células Eritroides/metabolismo , Ferritinas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hierro/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Proteínas Portadoras , Línea Celular , Proteínas de Unión al ADN , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Lisosomas/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Coactivadores de Receptor Nuclear/genética , Proteínas de Unión al ARN
11.
J Biol Chem ; 291(43): 22344-22356, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27519415

RESUMEN

Cells contain hundreds of proteins that require iron cofactors for activity. Iron cofactors are synthesized in the cell, but the pathways involved in distributing heme, iron-sulfur clusters, and ferrous/ferric ions to apoproteins remain incompletely defined. In particular, cytosolic monothiol glutaredoxins and BolA-like proteins have been identified as [2Fe-2S]-coordinating complexes in vitro and iron-regulatory proteins in fungi, but it is not clear how these proteins function in mammalian systems or how this complex might affect Fe-S proteins or the cytosolic Fe-S assembly machinery. To explore these questions, we use quantitative immunoprecipitation and live cell proximity-dependent biotinylation to monitor interactions between Glrx3, BolA2, and components of the cytosolic iron-sulfur cluster assembly system. We characterize cytosolic Glrx3·BolA2 as a [2Fe-2S] chaperone complex in human cells. Unlike complexes formed by fungal orthologs, human Glrx3-BolA2 interaction required the coordination of Fe-S clusters, whereas Glrx3 homodimer formation did not. Cellular Glrx3·BolA2 complexes increased 6-8-fold in response to increasing iron, forming a rapidly expandable pool of Fe-S clusters. Fe-S coordination by Glrx3·BolA2 did not depend on Ciapin1 or Ciao1, proteins that bind Glrx3 and are involved in cytosolic Fe-S cluster assembly and distribution. Instead, Glrx3 and BolA2 bound and facilitated Fe-S incorporation into Ciapin1, a [2Fe-2S] protein functioning early in the cytosolic Fe-S assembly pathway. Thus, Glrx3·BolA is a [2Fe-2S] chaperone complex capable of transferring [2Fe-2S] clusters to apoproteins in human cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas/metabolismo , Células Cultivadas , Células HEK293 , Humanos
13.
Proc Natl Acad Sci U S A ; 111(22): 8031-6, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843120

RESUMEN

Although cells express hundreds of metalloenzymes, the mechanisms by which apoenzymes receive their metal cofactors are largely unknown. Poly(rC)-binding proteins PCBP1 and PCBP2 are multifunctional adaptor proteins that bind iron and deliver it to ferritin for storage or to prolyl and asparagyl hydroxylases to metallate the mononuclear iron center. Here, we show that PCBP1 and PCBP2 also deliver iron to deoxyhypusine hydroxylase (DOHH), the dinuclear iron enzyme required for hypusine modification of the translation factor eukaryotic initiation factor 5A. Cells depleted of PCBP1 or PCBP2 exhibited loss of DOHH activity and loss of the holo form of the enzyme in cells, particularly when cells were made mildly iron-deficient. Lysates containing PCBP1 and PCBP2 converted apo-DOHH to holo-DOHH in vitro with greater efficiency than lysates lacking PCBP1 or PCBP2. PCBP1 bound to DOHH in iron-treated cells but not in control or iron-deficient cells. Depletion of PCBP1 or PCBP2 had no effect on the cytosolic Fe-S cluster enzyme xanthine oxidase but led to loss of cytosolic aconitase activity. Loss of aconitase activity was not accompanied by gain of RNA-binding activity, a pattern suggesting the incomplete disassembly of the [4Fe-4S] cluster. PCBP depletions had minimal effects on total cellular iron, mitochondrial iron levels, and heme synthesis. Thus, PCBP1 and PCBP2 may serve as iron chaperones to multiple classes of cytosolic nonheme iron enzymes and may have a particular role in restoring metal cofactors that are spontaneously lost in iron deficient cells.


Asunto(s)
Ferritinas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hierro/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Unión al ARN/metabolismo , Carcinoma Hepatocelular , Citosol/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Hemo/biosíntesis , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Proteínas Hierro-Azufre/metabolismo , Neoplasias Hepáticas , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Factores de Iniciación de Péptidos/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
14.
J Biol Chem ; 290(30): 18467-77, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26055708

RESUMEN

Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies.


Asunto(s)
Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , alfa-Sinucleína/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Unión Proteica , Mapas de Interacción de Proteínas , Ratas , Saccharomyces cerevisiae , Canal Aniónico 1 Dependiente del Voltaje/genética , alfa-Sinucleína/genética
15.
J Biol Chem ; 288(24): 17791-802, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23640898

RESUMEN

The mechanisms through which iron-dependent enzymes receive their metal cofactors are largely unknown. Poly r(C)-binding protein 1 (PCBP1) is an iron chaperone for ferritin; both PCBP1 and its paralog PCBP2 are required for iron delivery to the prolyl hydroxylase that regulates HIF1. Here we show that PCBP2 is also an iron chaperone for ferritin. Co-expression of PCBP2 and human ferritins in yeast activated the iron deficiency response and increased iron deposition into ferritin. Depletion of PCBP2 in Huh7 cells diminished iron incorporation into ferritin. Both PCBP1 and PCBP2 were co-immunoprecipitated with ferritin in HEK293 cells, and expression of both PCBPs was required for ferritin complex formation in cells. PCBP1 and -2 exhibited high affinity binding to ferritin in vitro. Mammalian genomes encode 4 PCBPs, including the minimally expressed PCBPs 3 and 4. Expression of PCBP3 and -4 in yeast activated the iron deficiency response, but only PCBP3 exhibited strong interactions with ferritin. Expression of PCBP1 and ferritin in an iron-sensitive, ccc1 yeast strain intensified the toxic effects of iron, whereas expression of PCBP4 protected the cells from iron toxicity. Thus, PCBP1 and -2 form a complex for iron delivery to ferritin, and all PCBPs may share iron chaperone activity.


Asunto(s)
Ferritinas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Hierro/metabolismo , Proteínas de Unión al ARN/fisiología , Saccharomyces cerevisiae/metabolismo , Línea Celular , Proteínas de Unión al ADN , Ferritinas/química , Expresión Génica , Genes Reporteros , Ribonucleoproteínas Nucleares Heterogéneas/biosíntesis , Ribonucleoproteínas Nucleares Heterogéneas/química , Humanos , Inmunoprecipitación , Oligonucleótidos/química , Unión Proteica , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/química , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
16.
PLoS Pathog ; 8(7): e1002795, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22807677

RESUMEN

Trypanosomatid protozoan parasites lack a functional heme biosynthetic pathway, so must acquire heme from the environment to survive. However, the molecular pathway responsible for heme acquisition by these organisms is unknown. Here we show that L. amazonensis LHR1, a homolog of the C. elegans plasma membrane heme transporter HRG-4, functions in heme transport. Tagged LHR1 localized to the plasma membrane and to endocytic compartments, in both L. amazonensis and mammalian cells. Heme deprivation in L. amazonensis increased LHR1 transcript levels, promoted uptake of the fluorescent heme analog ZnMP, and increased the total intracellular heme content of promastigotes. Conversely, deletion of one LHR1 allele reduced ZnMP uptake and the intracellular heme pool by approximately 50%, indicating that LHR1 is a major heme importer in L. amazonensis. Viable parasites with correct replacement of both LHR1 alleles could not be obtained despite extensive attempts, suggesting that this gene is essential for the survival of promastigotes. Notably, LHR1 expression allowed Saccharomyces cerevisiae to import heme from the environment, and rescued growth of a strain deficient in heme biosynthesis. Syntenic genes with high sequence identity to LHR1 are present in the genomes of several species of Leishmania and also Trypanosoma cruzi and Trypanosoma brucei, indicating that therapeutic agents targeting this transporter could be effective against a broad group of trypanosomatid parasites that cause serious human disease.


Asunto(s)
Hemo/metabolismo , Leishmania mexicana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células HeLa , Hemo/deficiencia , Humanos , Leishmania mexicana/patogenicidad , Macrófagos/metabolismo , Macrófagos/parasitología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Metaloporfirinas/metabolismo , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Methods Mol Biol ; 2839: 53-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008248

RESUMEN

Iron forms essential cofactors used by many nuclear enzymes involved in genome maintenance. However, unchaperoned nuclear iron may represent a threat to the surrounding genetic material as it promotes redox toxicity that may affect DNA integrity. Safely handling intracellular iron implies metal transfer and cofactor assembly processes based on protein-protein interactions. Identifying those interactions commonly occurs via high-throughput approaches using affinity purification or proximity labeling coupled with mass spectrometry analysis. However, these methods do not identify the subcellular location of the interactions. The one-on-one confirmation of proposed nuclear interactions is also challenging. Many approaches used to look at protein interactions are not tailored for looking at the nucleus because the methods used to solubilize nuclear content are harsh enough to disrupt those transient interactions. Here, we describe step-by-step the use of Proximity Ligation Assay (PLA) to analyze iron-mediated protein-protein interactions in the nucleus of cultured human cells. PLA allows the subcellular visualization of the interactions via the in situ detection of the two interacting proteins using fluorescence confocal microscopy. Briefly, cells are fixed, blocked, permeabilized, and incubated with primary antibodies directed to target proteins. Primary antibodies are recognized using PLA probes consisting of one PLUS and one MINUS oligonucleotide-labeled secondary antibody. If the two proteins are close enough (<40 nm), the PLA probes are ligated and used as the template for rolling circle amplification (RCA) with fluorescently labeled oligonucleotides that yield a signal detectable using fluorescence confocal microscopy. A fluorescently labeled membrane-specific stain (WGA) and the DNA-specific probe DAPI are used to identify cellular and nuclear boundaries, respectively. Confocal images are then analyzed using the CellProfiler software to confirm the abundance and localization of the studied protein-protein interactions.


Asunto(s)
Núcleo Celular , Hierro , Mapeo de Interacción de Proteínas , Humanos , Núcleo Celular/metabolismo , Hierro/metabolismo , Mapeo de Interacción de Proteínas/métodos , Unión Proteica , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos
18.
J Biol Chem ; 287(17): 13518-23, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22389494

RESUMEN

Eukaryotic cells contain hundreds of metalloproteins, and ensuring that each protein receives the correct metal ion is a critical task for cells. Recent work in budding yeast and mammalian cells has uncovered a system of iron delivery operating in the cytosolic compartment that involves monothiol glutaredoxins, which bind iron in the form of iron-sulfur clusters, and poly(rC)-binding proteins, which bind Fe(II) directly. In yeast cells, cytosolic monothiol glutaredoxins are required for the formation of heme and iron-sulfur clusters and the metallation of some non-heme iron enzymes. Poly(rC)-binding proteins can act as iron chaperones, delivering iron to target non-heme enzymes through direct protein-protein interactions. Although the molecular details have yet to be explored, these proteins, acting independently or together, may represent the basic cellular machinery for intracellular iron delivery.


Asunto(s)
Hierro/química , Animales , Transporte Biológico , Citosol/metabolismo , Enzimas/química , Glutarredoxinas/química , Hemo/química , Humanos , Proteínas de Unión a Hierro/química , Proteínas Hierro-Azufre/química , Metaloproteínas/química , Metales/química , Modelos Biológicos , Chaperonas Moleculares/química , Compuestos de Sulfhidrilo/química , Frataxina
19.
J Biol Chem ; 287(7): 4914-24, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22174408

RESUMEN

Caenorhabditis elegans and human HRG-1-related proteins are conserved, membrane-bound permeases that bind and translocate heme in metazoan cells via a currently uncharacterized mechanism. Here, we show that cellular import of heme by HRG-1-related proteins from worms and humans requires strategically located amino acids that are topologically conserved across species. We exploit a heme synthesis-defective Saccharomyces cerevisiae mutant to model the heme auxotrophy of C. elegans and demonstrate that, under heme-deplete conditions, the endosomal CeHRG-1 requires both a specific histidine in the predicted second transmembrane domain (TMD2) and the FARKY motif in the C terminus tail for heme transport. By contrast, the plasma membrane CeHRG-4 transports heme by utilizing a histidine in the exoplasmic (E2) loop and the FARKY motif. Optimal activity under heme-limiting conditions, however, requires histidine in the E2 loop of CeHRG-1 and tyrosine in TMD2 of CeHRG-4. An analogous system exists in humans, because mutation of the synonymous histidine in TMD2 of hHRG-1 eliminates heme transport activity, implying an evolutionary conserved heme transport mechanism that predates vertebrate origins. Our results support a model in which heme is translocated across membranes facilitated by conserved amino acids positioned on the exoplasmic, cytoplasmic, and transmembrane regions of HRG-1-related proteins. These findings may provide a framework for understanding the structural basis of heme transport in eukaryotes and human parasites, which rely on host heme for survival.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Hemoproteínas/metabolismo , Modelos Biológicos , Secuencias de Aminoácidos , Animales , Transporte Biológico Activo/fisiología , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Hemoproteínas/química , Hemoproteínas/genética , Humanos , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Biochim Biophys Acta ; 1823(9): 1509-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22306284

RESUMEN

Eukaryotic cells contain dozens, perhaps hundreds, of iron-dependent proteins, which perform critical functions in nearly every major cellular process. Nutritional iron is frequently available to cells in only limited amounts; thus, unicellular and higher eukaryotes have evolved mechanisms to cope with iron scarcity. These mechanisms have been studied at the molecular level in the model eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe, as well as in some pathogenic fungi. Each of these fungal species exhibits metabolic adaptations to iron deficiency that serve to reduce the cell's reliance on iron. However, the regulatory mechanisms that accomplish these adaptations differ greatly between fungal species. This article is part of a Special Issue entitled: Cell Biology of Metals.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Deficiencias de Hierro , Metaboloma/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Adaptación Fisiológica , Citosol/metabolismo , Proteínas Fúngicas , Hemo/metabolismo , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA