Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ecol Appl ; 31(2): e02255, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159425

RESUMEN

Urban forested natural areas are valuable ecological and social resources, but long-term sustainability of these habitats is challenged by environmental and social factors associated with urban ecosystems. Advances in city-scale assessments of urban forests have increased the resolution of forest community types and conditions, allowing for improved understanding of ecological function, such as natural regeneration, in these urban habitats. By applying metrics of tree regeneration that are commonly used for the management of rural forests, urban ecologists can test the potential for traditional forest management strategies within our cities. In this study, we compare urban and rural oak-hickory forest composition and structure and the capacity for natural regeneration in the New York metropolitan area. Specifically, we use two metrics of advance regeneration that describe the abundance of seedlings and saplings at different size classes to test whether this management for natural regeneration is a viable option. We found differences in recruitment dynamics between urban and rural forests that have implications for the sustainability of these forests and new management strategies. First, after controlling for forest community type, species composition in urban and rural sites was significantly different across multiple strata and within the seed bank. Species-specific capacity for natural regeneration was different in urban and rural sites, signaling the possibility of divergent successional trajectories. Second, while differences in species composition exist, both urban and rural sites were dominated by native species across all forest strata except for urban seed banks. Third, despite finding significantly lower average annual seedling abundance in urban (1.9 seedlings/m2 ) compared to rural (7.1 seedlings/m2 ) sites, we observed greater density of saplings in urban forests, and no significant difference in stocking index between sites. These findings suggest that early-establishment barriers to recruitment are greater in urban forest sites. However, once established, seedling transition into advance regeneration stages may not be different between site types, and advance regeneration may, in some cases, be more viable in urban forested natural areas. These results highlight functional differences between urban and rural forest recruitment dynamics that may impact on the future community composition of oak-hickory forests in the two landscape settings.


Asunto(s)
Ecosistema , Bosques , Ciudades , New York , Árboles
2.
Biol Rev Camb Philos Soc ; 99(1): 295-312, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37813383

RESUMEN

Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields. This study aims to identify the challenges and opportunities for enhancing forest restoration in both urban and rural systems by reviewing the scientific evidence, engaging with key stakeholders and using an urban-rural forest restoration framework. Using the Society for Ecological Restoration's International Principles as discussion topics, we highlight aspects of convergence and divergence between the two fields to broaden our understanding of forest restoration and promote integrative management approaches to address future forest conditions. Our findings reveal that urban and rural forest restoration have convergent and divergent aspects. We emphasise the importance of tailoring goals and objectives to specific contexts and the need to design different institutions and incentives based on the social and ecological needs and goals of stakeholders in different regions. Additionally, we discuss the challenges of achieving high levels of ecological restoration and the need to go beyond traditional ecology to plan, implement, monitor, and adaptively manage restored forests. We suggest that rivers and watersheds could serve as a common ground linking rural and urban landscapes and that forest restoration could interact with other environmental protection measures. We note the potential for expanding the creative vision associated with increasing tree-containing environments in cities to generate more diverse and resilient forest restoration outcomes in rural settings. This study underscores the value of integrative management approaches in addressing future forest conditions across the urban-rural continuum. Our framework provides valuable insights for policymakers, researchers, and decision-makers to advance the field of forest restoration and address the challenges of restoration across the urban-rural continuum. The rural-urban interface serves as a convergence point for forest restoration, and both urban and rural fields can benefit from each other's expertise.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles , Ríos , Ecosistema
3.
iScience ; 26(3): 106203, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876132

RESUMEN

While recent studies explore the negative impacts of light pollution on arthropods, few studies investigated community-level responses to artificial light. Using an array of landscaping lights and pitfall traps, we track community composition over 15 consecutive days and nights, including a five-night pre-light period, a five-night during-light period, and a five-night post-light period. Our results highlight a trophic-level response to artificial nighttime lighting with shifts in the presence and abundance of predators, scavengers, parasites, and herbivores. We show that associated trophic shifts occurred immediately upon the introduction of artificial light at night and are limited to nocturnal communities. Lastly, trophic levels reverted to their pre-light state, suggesting many short-term changes in communities are likely the result of behavioral shifts. These trophic shifts may become common as light pollution increases, implicating artificial light as a cause of global arthropod community change and highlighting light pollution's role in global herbivorous arthropod decline.

4.
Nat Commun ; 14(1): 4751, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550318

RESUMEN

Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.


Asunto(s)
Quirópteros , Urbanización , Animales , Abejas , Síndrome , Ecosistema , Biodiversidad , Aves
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA