Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948005

RESUMEN

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Asunto(s)
Miocimia , Proteínas del Tejido Nervioso , Animales , Autoanticuerpos , Axones , Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Genética Inversa
2.
Hum Genet ; 143(5): 649-666, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538918

RESUMEN

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Asunto(s)
Genómica , Humanos , Genómica/métodos , Exoma/genética , Secuenciación del Exoma/métodos , Bases de Datos Genéticas , Pruebas Genéticas/métodos , Genoma Humano , Secuenciación Completa del Genoma/métodos , Fenotipo
3.
Brain ; 146(9): 3616-3623, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37253099

RESUMEN

Moyamoya disease, a cerebrovascular disease leading to strokes in children and young adults, is characterized by progressive occlusion of the distal internal carotid arteries and the formation of collateral vessels. Altered genes play a prominent role in the aetiology of moyamoya disease, but a causative gene is not identified in the majority of cases. Exome sequencing data from 151 individuals from 84 unsolved families were analysed to identify further genes for moyamoya disease, then candidate genes assessed in additional cases (150 probands). Two families had the same rare variant in ANO1, which encodes a calcium-activated chloride channel, anoctamin-1. Haplotype analyses found the families were related, and ANO1 p.Met658Val segregated with moyamoya disease in the family with an LOD score of 3.3. Six additional ANO1 rare variants were identified in moyamoya disease families. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harbouring these gain-of-function ANO1 variants had classic features of moyamoya disease, but also had aneurysm, stenosis and/or occlusion in the posterior circulation. Our studies support that ANO1 gain-of-function pathogenic variants predispose to moyamoya disease and are associated with unique involvement of the posterior circulation.


Asunto(s)
Anoctamina-1 , Enfermedad de Moyamoya , Niño , Humanos , Adulto Joven , Anoctamina-1/genética , Canales de Cloruro/genética , Enfermedad de Moyamoya/genética , Proteínas de Neoplasias/genética
4.
J Neurooncol ; 164(1): 239-247, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37450072

RESUMEN

PURPOSE: Belzutifan is a selective inhibitor of hypoxia-inducible factor 2 alpha (HIF-2a) that has emerged as a targeted therapy option for Von Hippel-Lindau (VHL) syndrome-associated tumors with recent FDA approval. There is limited real-world evidence regarding safety and efficacy in CNS hemangioblastoma. Our objective was to report on our clinical experience with belzutifan in adult patients with VHL-associated CNS hemangioblastoma. METHODS: We retrospectively reviewed our institutional experience of belzutifan in adult patients (> 18 years of age at time of therapy) with VHL and craniospinal CNS hemangioblastomas not amenable to surgical resection. The period for study review was October 2021 to March 2023. RESULTS: 4 patients (all female) with a median age of 36 years at time of belzutifan initiation were included. Median duration of therapy at last follow-up was 11 months (6-17 months). All patients had radiographic response to therapy after a median of 3 months (2-5 months), with maximal response to therapy after a median of 8 months (3-17 months). Therapy was well tolerated, with the most common adverse effect being anemia. No patients had treatment pauses or dose adjustments due to belzutifan-related toxicity. No patients experienced hypoxia. CONCLUSION: We showed that belzutifan is safe and well-tolerated with strong disease response for CNS hemangioblastoma in adults with VHL, supporting continued use of belzutifan in this patient population. Future studies should assess duration of treatment, effects of cessation after long-term use, and markers of therapeutic response.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Hemangioblastoma , Enfermedad de von Hippel-Lindau , Adulto , Humanos , Femenino , Hemangioblastoma/patología , Estudios Retrospectivos , Enfermedad de von Hippel-Lindau/complicaciones , Enfermedad de von Hippel-Lindau/tratamiento farmacológico , Enfermedad de von Hippel-Lindau/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/complicaciones , Sistema Nervioso Central/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau
5.
Genet Med ; 23(9): 1624-1635, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040189

RESUMEN

PURPOSE: The human chromosome 19q13.11 deletion syndrome is associated with a variable phenotype that includes aplasia cutis congenita (ACC) and ectrodactyly as specific features. UBA2 (ubiquitin-like modifier-activating enzyme 2) lies adjacent to the minimal deletion overlap region. We aimed to define the UBA2-related phenotypic spectrum in humans and zebrafish due to sequence variants and to establish the mechanism of disease. METHODS: Exome sequencing was used to detect UBA2 sequence variants in 16 subjects in 7 unrelated families. uba2 loss of function was modeled in zebrafish. Effects of human missense variants were assessed in zebrafish rescue experiments. RESULTS: Seven human UBA2 loss-of-function and missense sequence variants were detected. UBA2-phenotypes included ACC, ectrodactyly, neurodevelopmental abnormalities, ectodermal, skeletal, craniofacial, cardiac, renal, and genital anomalies. uba2 was expressed in zebrafish eye, brain, and pectoral fins; uba2-null fish showed deficient growth, microcephaly, microphthalmia, mandibular hypoplasia, and abnormal fins. uba2-mRNAs with human missense variants failed to rescue nullizygous zebrafish phenotypes. CONCLUSION: UBA2 variants cause a recognizable syndrome with a wide phenotypic spectrum. Our data suggest that loss of UBA2 function underlies the human UBA2 monogenic disorder and highlights the importance of SUMOylation in the development of affected tissues.


Asunto(s)
Anomalías Múltiples , Displasia Ectodérmica , Deformidades Congénitas de las Extremidades , Animales , Displasia Ectodérmica/genética , Humanos , Deformidades Congénitas de las Extremidades/genética , Enzimas Activadoras de Ubiquitina , Pez Cebra/genética
6.
Genet Med ; 23(3): 498-507, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144682

RESUMEN

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Asunto(s)
Exoma , Enfermedades no Diagnosticadas , Exoma/genética , Pruebas Genéticas , Humanos , Fenotipo , Investigación Biomédica Traslacional , Secuenciación del Exoma
7.
Hepatology ; 72(6): 1968-1986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32145091

RESUMEN

BACKGROUND AND AIMS: Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. APPROACH AND RESULTS: Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. CONCLUSIONS: Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.


Asunto(s)
Autofagia/genética , Trastornos Congénitos de Glicosilación/genética , Hepatopatías/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adulto , Biopsia , Células Cultivadas , Trastornos Congénitos de Glicosilación/sangre , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Análisis Mutacional de ADN , Fibroblastos , Humanos , Hígado/citología , Hígado/patología , Hepatopatías/sangre , Hepatopatías/diagnóstico , Hepatopatías/patología , Masculino , Mutación Missense , Linaje , Cultivo Primario de Células
8.
Am J Med Genet A ; 182(4): 652-658, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31883306

RESUMEN

The non-POU domain containing, octamer-binding gene, NONO, is located on chromosome Xq13.1 and encodes a member of a small family of RNA and DNA binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Hemizygous loss-of-function variants in NONO have been shown to cause mental retardation, X-linked, syndromic 34 in males. Features of this disorder can include a range of neurodevelopmental phenotypes, left ventricular noncompaction (LVNC), congenital heart defects, and CNS anomalies. To date only eight cases have been described in the literature. Here we report two unrelated patients and a miscarried fetus with loss-of-function variants in NONO. Their phenotypes, and a review of previously reported cases, demonstrate that hemizygous loss-of-function variants in NONO cause a recognizable genetic syndrome. The cardinal features of this condition include developmental delay, intellectual disability, hypotonia, macrocephaly, structural abnormalities affecting the corpus callosum and/or cerebellum, LVNC, congenital heart defects, and gastrointestinal/feeding issues. This syndrome also carries an increased risk for strabismus and cryptorchidism and is associated with dysmorphic features that include an elongated face, up/down-slanted palpebral fissures, frontal bossing, and malar hypoplasia.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/patología , Cardiopatías Congénitas/patología , Hemicigoto , Discapacidad Intelectual/patología , Mutación , Proteínas de Unión al ARN/genética , Adulto , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Edad Gestacional , Cardiopatías Congénitas/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Síndrome
9.
BMC Nephrol ; 21(1): 341, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32791958

RESUMEN

BACKGROUND: Genetic changes in the LIM homeobox transcription factor 1 beta (LMX1B) have been associated with focal segmental glomerulosclerosis (FSGS) without the extra-renal or ultrastructural manifestations of Nail-patella syndrome (NPS) known as Nail-patella-like renal disease (NPLRD). Fabry disease (FD) is an X-linked lysosomal disease caused by the deficiency of alpha-galactosidase A. The classic form of the disease is characterized by acroparesthesia, angiokeratomas, cornea verticillata, hypertrophic cardiomyopathy, strokes, and chronic kidney disease. Podocyte myelin bodies on ultrastructural examination of kidney tissue are very characteristic of FD; however some medications and other conditions may mimic this finding. CASE PRESENTATION: Here, we report on a female patient with chronic kidney disease (CKD), positive family history for kidney disease and kidney biopsy showing a FSGS lesion and presence of focal myelin figures within podocytes concerning for FD. However, genetic testing for FD was negative. After comprehensive clinical, biochemical, and genetic evaluation, including whole exome and RNA sequencing, she was ultimately diagnosed with NPLRD. CONCLUSIONS: This case illustrates the difficulties of diagnosing atypical forms of rare Mendelian kidney diseases and the role of a multidisciplinary team in an individualized medicine clinic setting in combination with state-of-the-art sequencing technologies to reach a definitive diagnosis.


Asunto(s)
Enfermedad de Fabry/patología , Riñón/patología , Síndrome de la Uña-Rótula/patología , Nefritis Hereditaria/patología , Anciano , Diagnóstico Diferencial , Femenino , Pruebas Genéticas , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Riñón/ultraestructura , Proteínas con Homeodominio LIM/genética , Síndrome de la Uña-Rótula/diagnóstico , Nefritis Hereditaria/diagnóstico , Podocitos/ultraestructura , Factores de Transcripción/genética , alfa-Galactosidasa/genética
10.
Clin Immunol ; 207: 55-57, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30282051

RESUMEN

We report a 34-year-old male patient with a novel variant in KMT2D gene, which finally ended a quest for a diagnosis that was clinically suspected in the past, prior the molecular basis of Kabuki Syndrome (KS) was known. The patient showcases the multisystemic features, with involvement of all previously associated with KS body systems, presence of immune deficiency as well as autoimmune disorders, requiring three pancreatic transplants. We also report, for the first time to our knowledge, the presence of epidural lipomatosis and Hodgkin Lymphoma in a patient with KS.


Asunto(s)
Anomalías Múltiples/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedad de Hodgkin/complicaciones , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Adulto , Enfermedades Hematológicas/diagnóstico , Enfermedad de Hodgkin/patología , Humanos , Masculino , Fenotipo , Enfermedades Vestibulares/diagnóstico , Secuenciación del Exoma
11.
Am J Med Genet A ; 179(4): 570-578, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30734472

RESUMEN

DDX3X (Xp11.4) encodes a DEAD-box RNA helicase that escapes X chromosome inactivation. Pathogenic variants in DDX3X have been shown to cause X-linked intellectual disability (ID) (MRX102, MIM: 300958). The phenotypes associated with DDX3X variants are heterogeneous and include brain and behavioral abnormalities, microcephaly, hypotonia, and movement disorders and/or spasticity. The majority of DDX3X variants described are de novo mutations in females with ID. In contrast, most male DDX3X variants are inherited from an unaffected mother, with one documented exception being a recently identified de novo splice site variant. It has been suggested, therefore, that DDX3X exerts its effects through haploinsufficiency in females, and that affected males carry hypomorphic alleles that retain partial function. Given the lack of male de novo DDX3X variants, loss-of-function variants in this gene are suspected to be male lethal. Through whole-exome sequencing, we identified three unrelated males with hemizygous missense DDX3X variants and ID. All three variants were confirmed by Sanger sequencing, with two established as de novo. In silico analyses were supportive of pathogenicity. We report the male phenotypes and compare them to phenotypes observed in previously reported male and female patients. In conclusion, we propose that de novo DDX3X variants are not necessarily male lethal and should be considered as a cause of syndromic ID in both males and females.


Asunto(s)
ARN Helicasas DEAD-box/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación Missense , Adolescente , Niño , Femenino , Humanos , Masculino , Fenotipo , Factores Sexuales , Síndrome , Secuenciación del Exoma
12.
J Clin Immunol ; 38(3): 307-319, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29671115

RESUMEN

PURPOSE: We report a female infant identified by newborn screening for severe combined immunodeficiencies (NBS SCID) with T cell lymphopenia (TCL). The patient had persistently elevated alpha-fetoprotein (AFP) with IgA deficiency, and elevated IgM. Gene sequencing for a SCID panel was uninformative. We sought to determine the cause of the immunodeficiency in this infant. METHODS: We performed whole-exome sequencing (WES) on the patient and parents to identify a genetic diagnosis. Based on the WES result, we developed a novel flow cytometric panel for rapid assessment of DNA repair defects using blood samples. We also performed whole transcriptome sequencing (WTS) on fibroblast RNA from the patient and father for abnormal transcript analysis. RESULTS: WES revealed a pathogenic paternally inherited indel in ATM. We used the flow panel to assess several proteins in the DNA repair pathway in lymphocyte subsets. The patient had absent phosphorylation of ATM, resulting in absent or aberrant phosphorylation of downstream proteins, including γH2AX. However, ataxia-telangiectasia (AT) is an autosomal recessive condition, and the abnormal functional data did not correspond with a single ATM variant. WTS revealed in-frame reciprocal fusion transcripts involving ATM and SLC35F2 indicating a chromosome 11 inversion within 11q22.3, of maternal origin. Inversion breakpoints were identified within ATM intron 16 and SLC35F2 intron 7. CONCLUSIONS: We identified a novel ATM-breaking chromosome 11 inversion in trans with a pathogenic indel (compound heterozygote) resulting in non-functional ATM protein, consistent with a diagnosis of AT. Utilization of several molecular and functional assays allowed successful resolution of this case.


Asunto(s)
Genómica , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/metabolismo , Proteómica , Biomarcadores , Biología Computacional/métodos , ADN , Femenino , Perfilación de la Expresión Génica , Variación Genética , Genómica/métodos , Humanos , Síndromes de Inmunodeficiencia/diagnóstico , Inmunofenotipificación , Lactante , Proteínas , Proteómica/métodos , ARN , Secuenciación del Exoma
14.
Am J Med Genet A ; 176(12): 2710-2719, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30450772

RESUMEN

SOX2 is a transcription factor that is essential for maintenance of pluripotency and has several conserved roles in early embryonic development. Heterozygous loss-of-function variants in SOX2 are identified in approximately 40% of all cases of bilateral anophthalmia/micropthalmia (A/M). Increasingly SOX2 mutation-positive patients without major eye findings, but with a range of other developmental disorders including autism, mild to moderate intellectual disability with or without structural brain changes, esophageal atresia, urogenital anomalies, and endocrinopathy are being reported, suggesting that the clinical phenotype associated with SOX2 loss is much broader than previously appreciated. In this report we describe six new cases, four of which carry novel pathogenic SOX2 variants. Four cases presented with bilateral anophthalmia in addition to extraocular involvement. Another individual presented with only unilateral anophthalmia. One individual did not have any eye findings but presented with a suprasellar teratoma in infancy and was found to have the recurrent c.70del20 mutation in SOX2 (c.70_89del, p.Asn24Argfs*65). This is this first time this tumor type has been reported in the context of a de novo SOX2 mutation. Notably, individuals with hypothalamic hamartomas and slow-growing hypothalamo-pituitary tumors have been reported previously, but it is still unclear how SOX2 loss contributes to their formation.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Factores de Transcripción SOXB1/genética , Biopsia , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Preescolar , Consanguinidad , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Facies , Femenino , Humanos , Imagenología Tridimensional , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Análisis de Secuencia de ADN , Cráneo/anomalías , Cráneo/diagnóstico por imagen , Teratoma/diagnóstico , Teratoma/genética , Tomografía Computarizada por Rayos X , Secuenciación del Exoma
15.
Am J Gastroenterol ; 111(2): 275-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26729549

RESUMEN

OBJECTIVES: Hereditary biallelic mismatch repair deficiency (BMMRD) is caused by biallelic mutations in the mismatch repair (MMR) genes and manifests features of neurofibromatosis type 1, gastrointestinal (GI) polyposis, and GI, brain, and hematological cancers. This is the first study to characterize the GI phenotype in BMMRD using both retrospective and prospective surveillance data. METHODS: The International BMMRD Consortium was created to collect information on BMMRD families referred from around the world. All patients had germline biallelic MMR mutations or lack of MMR protein staining in normal and tumor tissue. GI screening data were obtained through medical records with annual updates. RESULTS: Thirty-five individuals from seven countries were identified with BMMRD. GI data were available on 24 of 33 individuals (73%) of screening age, totaling 53 person-years. The youngest age of colonic adenomas was 7, and small bowel adenoma was 11. Eight patients had 19 colorectal adenocarcinomas (CRC; median age 16.7 years, range 8-25), and 11 of 18 (61%) CRC were distal to the splenic flexure. Eleven patients had 15 colorectal surgeries (median 14 years, range 9-25). Four patients had five small bowel adenocarcinomas (SBC; median 18 years, range 11-33). Two CRC and two SBC were detected during surveillance within 6-11 months and 9-16 months, respectively, of last consecutive endoscopy. No patient undergoing surveillance died of a GI malignancy. Familial clustering of GI cancer was observed. CONCLUSIONS: The prevalence and penetrance of GI neoplasia in children with BMMRD is high, with rapid development of carcinoma. Colorectal and small bowel surveillance should commence at ages 3-5 and 8 years, respectively.


Asunto(s)
Adenocarcinoma/cirugía , Adenoma/cirugía , Neoplasias Encefálicas/fisiopatología , Neoplasias Colorrectales/cirugía , Intestino Delgado/cirugía , Síndromes Neoplásicos Hereditarios/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma/etiología , Adenocarcinoma/genética , Adenoma/etiología , Adenoma/genética , Adenosina Trifosfatasas/genética , Adolescente , Adulto , Alelos , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/genética , Niño , Preescolar , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/fisiopatología , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Femenino , Mutación de Línea Germinal , Glioma/etiología , Humanos , Neoplasias Intestinales/etiología , Neoplasias Intestinales/genética , Neoplasias Intestinales/cirugía , Neoplasias Renales/etiología , Leucemia/etiología , Linfoma/etiología , Masculino , Melanoma/etiología , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Homólogo 1 de la Proteína MutL , Síndromes Neoplásicos Hereditarios/complicaciones , Síndromes Neoplásicos Hereditarios/genética , Proteínas Nucleares/genética , Fenotipo , Estudios Prospectivos , Estudios Retrospectivos , Tumor de Wilms/etiología , Adulto Joven
16.
Genet Med ; 18(1): 13-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25856668

RESUMEN

Germ-line mutations in MLH1, MSH2, MSH6, and PMS2 have been shown to cause Lynch syndrome. The penetrance of the cancer and tumor spectrum has been repeatedly studied, and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared with the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age at onset and frequency of colonic screening. Published reports of PMS2 germ-line mutations were combined with unpublished cases from the authors' research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with colorectal cancer (CRC) were diagnosed before age 30, and each of these tumors presented on the left side of the colon. As it is currently unknown what causes the early onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the reduced penetrance.Genet Med 18 1, 13-19.


Asunto(s)
Adenosina Trifosfatasas/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Detección Precoz del Cáncer/métodos , Mutación de Línea Germinal , Heterocigoto , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Penetrancia
17.
Genet Med ; 16(8): 588-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24525918

RESUMEN

Heterozygous loss-of-function SMAD4 mutations are associated with juvenile polyposis syndrome and hereditary hemorrhagic telangiectasia. Some carriers exhibit symptoms of both conditions, leading to juvenile polyposis-hereditary hemorrhagic telangiectasia syndrome. Three families have been reported with connective tissue abnormalities. To better understand the spectrum and extent of clinical findings in SMAD4 carriers, medical records of 34 patients (20 families) from five clinical practices were reviewed. Twenty-one percent of the patients (7/34) had features suggesting a connective tissue defect: enlarged aortic root (n = 3), aortic and mitral insufficiency (n = 2), aortic dissection (n = 1), retinal detachment (n = 1), brain aneurysms (n = 1), and lax skin and joints (n = 1). Juvenile polyposis-specific findings were almost uniformly present but variable. Ninety-seven percent of the patients had colon polyps that were generally pan-colonic and of variable histology and number. Forty-eight percent of the patients (15/31) had extensive gastric polyposis. Hereditary hemorrhagic telangiectasia features, including epistaxis (19/31, 61%), mucocutaneous telangiectases (15/31, 48%), liver arteriovenous malformation (6/16, 38%), brain arteriovenous malformation (1/26, 4%), pulmonary arteriovenous malformation (9/17, 53%), and intrapulmonary shunting (14/23, 61%), were documented in 76% of the patients. SMAD4 carriers should be managed for juvenile polyposis and hereditary hemorrhagic telangiectasia because symptoms of both conditions are likely yet unpredictable. Connective tissue abnormalities are an emerging component of juvenile polyposis-hereditary hemorrhagic telangiectasia syndrome, and larger studies are needed to understand these manifestations.


Asunto(s)
Tejido Conectivo/patología , Poliposis Intestinal/congénito , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/patología , Adolescente , Adulto , Anciano , Niño , Preescolar , Humanos , Lactante , Poliposis Intestinal/genética , Poliposis Intestinal/patología , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Adulto Joven
19.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36195757

RESUMEN

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Asunto(s)
Mutación con Ganancia de Función , Síndromes de la Apnea del Sueño , Niño , Discapacidades del Desarrollo , Humanos , Mutación/genética , Proteínas del Tejido Nervioso , Canales de Potasio de Dominio Poro en Tándem , Síndromes de la Apnea del Sueño/genética
20.
Mayo Clin Proc ; 96(9): 2342-2353, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34120753

RESUMEN

OBJECTIVE: To increase the likelihood of finding a causative genetic variant in patients with a focal segmental glomerulosclerosis (FSGS) lesion, clinical and histologic characteristics were analyzed. PATIENTS AND METHODS: Individuals 18 years and older with an FSGS lesion on kidney biopsy evaluated at Mayo Clinic from November 1, 1999, through October 31, 2019, were divided into 4 groups based on clinical and histologic characteristics: primary FSGS, secondary FSGS with known cause, secondary FSGS without known cause, and undetermined FSGS. A targeted gene panel and a customized gene panel retrieved from exome sequencing were performed. RESULTS: The overall rate of detection of a monogenic cause was 42.9% (21/49). Individuals with undetermined FSGS had the highest rate of positivity (87.5%; 7/8) followed by secondary FSGS without an identifiable cause (61.5%; 8/13) and secondary FSGS with known cause (33.3%; 5/15). Four of 5 (80%) individuals in the latter group who had positive genetic testing results also had a family history of kidney disease. Univariate analysis showed that family history of kidney disease (odds ratio [OR], 13.8; 95% CI, 3.7 to 62.4; P<.001), absence of nephrotic syndrome (OR, 8.2; 95% CI, 1.9 to 58.1; P=.004), and female sex (OR, 5.1; 95% CI, 1.5 to 19.9; P=.01) were strong predictors of finding a causative genetic variant in the entire cohort. The most common variants were in the collagen genes (52.4%; 11/21), followed by the podocyte genes (38.1%; 8/21). CONCLUSION: In adults with FSGS lesions, proper selection of patients increases the rate of positive genetic testing significantly. The majority of individuals with undetermined FSGS in whom the clinical presentation and histologic parameters are discordant had a genetic diagnosis.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Selección de Paciente , Adulto , Biopsia/métodos , Colágeno Tipo IV/genética , Femenino , Glomeruloesclerosis Focal y Segmentaria/clasificación , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA