Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 120(13): 2644-2656, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34087211

RESUMEN

The leukocyte-specific ß2-integrin LFA-1 and its ligand ICAM-1, expressed on endothelial cells (ECs), are involved in the arrest, adhesion, and transendothelial migration of leukocytes. Although the role of mechanical forces on LFA-1 activation is well established, the impact of forces on its major ligand ICAM-1 has received less attention. Using a parallel-plate flow chamber combined with confocal and super-resolution microscopy, we show that prolonged shear flow induces global translocation of ICAM-1 on ECs upstream of flow direction. Interestingly, shear forces caused actin rearrangements and promoted actin-dependent ICAM-1 nanoclustering before LFA-1 engagement. T cells adhered to mechanically prestimulated ECs or nanoclustered ICAM-1 substrates developed a promigratory phenotype, migrated faster, and exhibited shorter-lived interactions with ECs than when adhered to non mechanically stimulated ECs or to monomeric ICAM-1 substrates. Together, our results indicate that shear forces increase ICAM-1/LFA-1 bonds because of ICAM-1 nanoclustering, strengthening adhesion and allowing cells to exert higher traction forces required for faster migration. Our data also underscore the importance of mechanical forces regulating the nanoscale organization of membrane receptors and their contribution to cell adhesion regulation.


Asunto(s)
Células Endoteliales , Molécula 1 de Adhesión Intercelular , Adhesión Celular , Movimiento Celular , Antígeno-1 Asociado a Función de Linfocito
2.
Biophys J ; 114(9): 2044-2051, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742398

RESUMEN

Time traces obtained from a variety of biophysical experiments contain valuable information on underlying processes occurring at the molecular level. Accurate quantification of these data can help explain the details of the complex dynamics of biological systems. Here, we describe PLANT (Piecewise Linear Approximation of Noisy Trajectories), a segmentation algorithm that allows the reconstruction of time-trace data with constant noise as consecutive straight lines, from which changes of slopes and their respective durations can be extracted. We present a general description of the algorithm and perform extensive simulations to characterize its strengths and limitations, providing a rationale for the performance of the algorithm in the different conditions tested. We further apply the algorithm to experimental data obtained from tracking the centroid position of lymphocytes migrating under the effect of a laminar flow and from single myosin molecules interacting with actin in a dual-trap force-clamp configuration.


Asunto(s)
Algoritmos , Biofisica/métodos , Células Endoteliales/citología , Procesamiento de Imagen Asistido por Computador , Linfocitos/citología , Microscopía de Fuerza Atómica , Relación Señal-Ruido , Factores de Tiempo
3.
Soft Matter ; 12(7): 2145-56, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26761718

RESUMEN

Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.


Asunto(s)
Biopolímeros/química , Factor XIII/química , Fibrina/química , Fenómenos Biomecánicos , Elasticidad , Dureza , Humanos , Cinética , Reología , Estrés Mecánico , Termodinámica
4.
Biophys J ; 105(10): 2240-51, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24268136

RESUMEN

During wound healing and angiogenesis, fibrin serves as a provisional extracellular matrix. We use a model system of fibroblasts embedded in fibrin gels to study how cell-mediated contraction may influence the macroscopic mechanical properties of their extracellular matrix during such processes. We demonstrate by macroscopic shear rheology that the cells increase the elastic modulus of the fibrin gels. Microscopy observations show that this stiffening sets in when the cells spread and apply traction forces on the fibrin fibers. We further show that the stiffening response mimics the effect of an external stress applied by mechanical shear. We propose that stiffening is a consequence of active myosin-driven cell contraction, which provokes a nonlinear elastic response of the fibrin matrix. Cell-induced stiffening is limited to a factor 3 even though fibrin gels can in principle stiffen much more before breaking. We discuss this observation in light of recent models of fibrin gel elasticity, and conclude that the fibroblasts pull out floppy modes, such as thermal bending undulations, from the fibrin network, but do not axially stretch the fibers. Our findings are relevant for understanding the role of matrix contraction by cells during wound healing and cancer development, and may provide design parameters for materials to guide morphogenesis in tissue engineering.


Asunto(s)
Fibrina/metabolismo , Estrés Mecánico , Fenómenos Biomecánicos , Matriz Extracelular/metabolismo , Fibrina/química , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Reología
5.
Biomacromolecules ; 12(7): 2797-805, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21671664

RESUMEN

Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.


Asunto(s)
Colágenos Fibrilares/química , Animales , Colágenos Fibrilares/síntesis química , Humanos , Tamaño de la Partícula , Ratas , Reología , Propiedades de Superficie
6.
Biophys J ; 98(10): 2281-9, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20483337

RESUMEN

Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations.


Asunto(s)
Elasticidad/fisiología , Fibrina/química , Geles/química , Modelos Moleculares , Resistencia al Corte/fisiología , Fenómenos Biomecánicos , Ensayo de Materiales , Mecánica , Reología , Resistencia a la Tracción/fisiología
7.
PLoS One ; 12(11): e0187815, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29141043

RESUMEN

The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament's initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics.


Asunto(s)
Hidrogeles , Fenómenos Físicos , Dimetilpolisiloxanos/química , Hidrodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA