Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 138(15): 1359-1372, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34375384

RESUMEN

The αIIbß3 integrin receptor coordinates platelet adhesion, activation, and mechanosensing in thrombosis and hemostasis. Using differential cysteine alkylation and mass spectrometry, we have identified a disulfide bond in the αIIb subunit linking cysteines 490 and 545 that is missing in ∼1 in 3 integrin molecules on the resting and activated human platelet surface. This alternate covalent form of αIIbß3 is predetermined as it is also produced by human megakaryoblasts and baby hamster kidney fibroblasts transfected with recombinant integrin. From coimmunoprecipitation experiments, the alternate form selectively partitions into focal adhesions on the activated platelet surface. Its function was evaluated in baby hamster kidney fibroblast cells expressing a mutant integrin with an ablated C490-C545 disulfide bond. The disulfide mutant integrin has functional outside-in signaling but extended residency time in focal adhesions due to a reduced rate of clathrin-mediated integrin internalization and recycling, which is associated with enhanced affinity of the αIIb subunit for clathrin adaptor protein 2. Molecular dynamics simulations indicate that the alternate covalent form of αIIb requires higher forces to transition from bent to open conformational states that is in accordance with reduced affinity for fibrinogen and activation by manganese ions. These findings indicate that the αIIbß3 integrin receptor is produced in various covalent forms that have different cell surface distribution and function. The C490, C545 cysteine pair is conserved across all 18 integrin α subunits, and the disulfide bond in the αV and α2 subunits in cultured cells is similarly missing, suggesting that the alternate integrin form and function are also conserved.


Asunto(s)
Adhesiones Focales/metabolismo , Integrina beta3/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Animales , Línea Celular , Cricetinae , Disulfuros/análisis , Adhesiones Focales/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina beta3/química , Integrina beta3/genética , Simulación de Dinámica Molecular , Mutación , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Glicoproteína IIb de Membrana Plaquetaria/química , Glicoproteína IIb de Membrana Plaquetaria/genética
2.
J Thromb Haemost ; 20(2): 285-292, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34674369

RESUMEN

The disulfide bond is a covalent bond formed between the sulfur atoms of two cysteine residues in proteins. Our understanding of the role of these ubiquitous bonds in protein function has changed dramatically over the past decade. Initially thought to be fully formed and inert in the native protein, we know now that both these assumptions are incorrect for many proteins. Here, we review recent evidence for production and function of multiple partially disulfide-bonded forms of plasma fibrinogen and platelet αIIbß3 integrin. The disulfide bonds are not cleaved in these mature proteins but rather a significant fraction of the bonds never form during maturation of the protein. The resulting different covalent states influence the functioning of the protein. These findings change our concept of the native, functional protein.


Asunto(s)
Fibrinógeno , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Trombosis , Plaquetas/metabolismo , Cisteína/química , Disulfuros/química , Fibrinógeno/química , Fibrinógeno/metabolismo , Humanos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo
3.
Methods Mol Biol ; 1967: 1-8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069761

RESUMEN

Protein disulphide bonds are the links between pairs of cysteine residues in the polypeptide chain. These bonds are classified based on the sign of the five dihedral angles that define the cystine residue. Twenty disulphide conformations are possible using this convention and all 20 are represented in protein structures. Force distribution analysis of the pairwise forces between the cysteine residues of the different conformations identified 2 of the 20 as having significant strain: the -RHstaple and -/+RHhook disulphide bonds. These two disulphide conformations are associated with allosteric function in proteins. An online tool is available that provides a comprehensive analysis of disulphide bonds in protein structures, including conformation, strain energy, solvent accessibility and secondary structures that the disulphide links.


Asunto(s)
Disulfuros/química , Péptidos/química , Conformación Proteica , Proteínas/química , Regulación Alostérica , Cisteína/química , Cistina/química , Estructura Secundaria de Proteína
4.
Leukemia ; 33(6): 1400-1410, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30622285

RESUMEN

Abnormal metabolism is a fundamental hallmark of cancer and represents a therapeutic opportunity, yet its regulation by oncogenes remains poorly understood. Here, we uncover that JMJD1C, a jumonji C (JmjC)-containing H3K9 demethylase, is a critical regulator of aberrant metabolic processes in homeobox A9 (HOXA9)-dependent acute myeloid leukemia (AML). JMJD1C overexpression increases in vivo cell proliferation and tumorigenicity through demethylase-independent upregulation of a glycolytic and oxidative program, which sustains leukemic cell bioenergetics and contributes to an aggressive AML phenotype in vivo. Targeting JMJD1C-mediated metabolism via pharmacologic inhibition of glycolysis and oxidative phosphorylation led to ATP depletion, induced necrosis/apoptosis and decreased tumor growth in vivo in leukemias co-expressing JMJD1C and HOXA9. The anti-metabolic therapy effectively diminished AML stem/progenitor cells and reduced tumor burden in a primary AML patient-derived xenograft. Our data establish a direct link between drug responses and endogenous expression of JMJD1C and HOXA9 in human AML cell line- and patient-derived xenografts. These findings demonstrate a previously unappreciated role for JMJD1C in counteracting adverse metabolic changes and retaining the metabolic integrity during tumorigenesis, which can be exploited therapeutically.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Glucólisis , Proteínas de Homeodominio/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Fosforilación Oxidativa , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Proteínas de Homeodominio/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mieloide Aguda/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Oxidorreductasas N-Desmetilantes/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
R Soc Open Sci ; 5(2): 171058, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29515832

RESUMEN

Protein disulfide bonds link pairs of cysteine sulfur atoms and are either structural or functional motifs. The allosteric disulfides control the function of the protein in which they reside when cleaved or formed. Here, we identify potential allosteric disulfides in all Protein Data Bank X-ray structures from bonds that are present in some molecules of a protein crystal but absent in others, or present in some structures of a protein but absent in others. We reasoned that the labile nature of these disulfides signifies a propensity for cleavage and so possible allosteric regulation of the protein in which the bond resides. A total of 511 labile disulfide bonds were identified. The labile disulfides are more stressed than the average bond, being characterized by high average torsional strain and stretching of the sulfur-sulfur bond and neighbouring bond angles. This pre-stress likely underpins their susceptibility to cleavage. The coagulation, complement and oxygen-sensing hypoxia inducible factor-1 pathways, which are known or have been suggested to be regulated by allosteric disulfides, are enriched in proteins containing labile disulfides. The identification of labile disulfide bonds will facilitate the study of this post-translational modification.

6.
J Int AIDS Soc ; 21(9): e25185, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30375818

RESUMEN

INTRODUCTION: The latent reservoir is the main barrier on the road to HIV cure, and clinical approaches towards eradication are often evaluated by their effect on proviral DNA. To ensure inclusiveness and representativeness in HIV cure studies, proviral DNA quantification assays that are able to detect all common circulating HIV clades are urgently needed. Here, three HIV DNA assays targeting three different genomic regions were evaluated for their sensitivity and subtype-tolerance using digital PCR. METHODS: A subtype-B-specific assay targeting gag (GAG) and two assays targeting conserved sequences in ltr and pol (LTR and JO) were assessed for their sensitivity and subtype-tolerance in digital PCR (Bio-Rad QX200), using a panel of serially diluted subtype reference plasmids as well as a panel of clinical isolates. Both panels represent subtypes A, B, C, D, F, G and circulating recombinant forms (CRFs) AE and AG, which together are responsible for 94% of HIV infections worldwide. RESULTS: HIV subtype was observed to greatly affect HIV DNA quantification results. Robust regression analysis of the serially diluted plasmid panel showed that the GAG assay was only able to linearly quantify subtype B, D and G isolates (4/13 reference plasmids, average R2 = 0.99), whereas LTR and JO were able to quantify all tested isolates (13/13 reference plasmids, respective average R2 = 0.99 and 0.98). In the clinical isolates panel, isolates were considered detectable if all replicates produced a positive result. The GAG assay could detect HIV DNA in four out of five subtype B and one out of two subtype D isolates, whereas the LTR and JO assays detected HIV DNA in all twenty-nine tested isolates. LTR and JO results were found to be equally precise but more precise than GAG. CONCLUSIONS: The results demonstrate the need for a careful validation of proviral reservoir quantification assays prior to investigations into non-B subtype reservoirs. The LTR and JO assays can sensitively and reliably quantify HIV DNA in a panel that represents the worldwide most prevalent subtypes and CRFs (A, B, C, D, AE, F, G and AG), justifying their application in future trials aimed at global HIV cure.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Provirus , ADN Viral/análisis , Humanos , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Provirus/genética , Sensibilidad y Especificidad
7.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932420

RESUMEN

How proteins harness mechanical force to control function is a significant biological question. Here we describe a human cell surface receptor that couples ligand binding and force to trigger a chemical event which controls the adhesive properties of the receptor. Our studies of the secreted platelet oxidoreductase, ERp5, have revealed that it mediates release of fibrinogen from activated platelet αIIbß3 integrin. Protein chemical studies show that ligand binding to extended αIIbß3 integrin renders the ßI-domain Cys177-Cys184 disulfide bond cleavable by ERp5. Fluid shear and force spectroscopy assays indicate that disulfide cleavage is enhanced by mechanical force. Cell adhesion assays and molecular dynamics simulations demonstrate that cleavage of the disulfide induces long-range allosteric effects within the ßI-domain, mainly affecting the metal-binding sites, that results in release of fibrinogen. This coupling of ligand binding, force and redox events to control cell adhesion may be employed to regulate other protein-protein interactions.


Asunto(s)
Plaquetas/metabolismo , Fibrinógeno/química , Mecanotransducción Celular , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Regulación Alostérica , Sitios de Unión , Plaquetas/química , Plaquetas/citología , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrinógeno/genética , Fibrinógeno/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Adhesividad Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA