Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 125(Pt 16): 3790-800, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22553210

RESUMEN

Multinucleated muscle fibres arise by fusion of precursor cells called myoblasts. We previously showed that CKIP-1 ectopic expression in C2C12 myoblasts increased cell fusion. In this work, we report that CKIP-1 depletion drastically impairs C2C12 myoblast fusion in vitro and in vivo during zebrafish muscle development. Within developing fast-twich myotome, Ckip-1 localises at the periphery of fast precursor cells, closed to the plasma membrane. Unlike wild-type myoblasts that form spatially arrayed multinucleated fast myofibres, Ckip-1-deficient myoblasts show a drastic reduction in fusion capacity. A search for CKIP-1 binding partners identified the ARPC1 subunit of Arp2/3 actin nucleation complex essential for myoblast fusion. We demonstrate that CKIP-1, through binding to plasma membrane phosphoinositides via its PH domain, regulates cell morphology and lamellipodia formation by recruiting the Arp2/3 complex at the plasma membrane. These results establish CKIP-1 as a regulator of cortical actin that recruits the Arp2/3 complex at the plasma membrane essential for muscle precursor elongation and fusion.


Asunto(s)
Proteínas Portadoras/fisiología , Fusión de Membrana/fisiología , Mioblastos/citología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mamíferos , Ratones , Mioblastos/metabolismo , Transfección , Pez Cebra
2.
Nature ; 442(7102): 580-4, 2006 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16862128

RESUMEN

Epithelial tissues maintain a robust architecture during development. This fundamental property relies on intercellular adhesion through the formation of adherens junctions containing E-cadherin molecules. Localization of E-cadherin is stabilized through a pathway involving the recruitment of actin filaments by E-cadherin. Here we identify an additional pathway that organizes actin filaments in the apical junctional region (AJR) where adherens junctions form in embryonic epithelia. This pathway is controlled by Bitesize (Btsz), a synaptotagmin-like protein that is recruited in the AJR independently of E-cadherin and is required for epithelial stability in Drosophila embryos. On loss of btsz, E-cadherin is recruited normally to the AJR, but is not stabilized properly and actin filaments fail to form a stable continuous network. In the absence of E-cadherin, actin filaments are stable for a longer time than they are in btsz mutants. We identify two polarized cues that localize Btsz: phosphatidylinositol (4,5)-bisphosphate, to which Btsz binds; and Par-3. We show that Btsz binds to the Ezrin-Radixin-Moesin protein Moesin, an F-actin-binding protein that is localized apically and is recruited in the AJR in a btsz-dependent manner. Expression of a dominant-negative form of Ezrin that does not bind F-actin phenocopies the loss of btsz. Thus, our data indicate that, through their interaction, Btsz and Moesin may mediate the proper organization of actin in a local domain, which in turn stabilizes E-cadherin. These results provide a mechanism for the spatial order of actin organization underlying junction stabilization in primary embryonic epithelia.


Asunto(s)
Actinas/química , Actinas/metabolismo , Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Sinaptotagminas , Uniones Adherentes/química , Animales , Cadherinas/química , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Interferencia de ARN
3.
Nat Cell Biol ; 5(2): 103-8, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12563275

RESUMEN

To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell-substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.


Asunto(s)
Membrana Celular/fisiología , Morfogénesis , Animales , Tipificación del Cuerpo , Adhesión Celular/fisiología , División Celular/fisiología , Polaridad Celular , Endocitosis/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Neuronas/citología , Neuronas/fisiología
4.
Curr Biol ; 16(6): 543-52, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16458513

RESUMEN

BACKGROUND: The shape of a nucleus depends on the nuclear lamina, which is tightly associated with the inner nuclear membrane and on the interaction with the cytoskeleton. However, the mechanism connecting the differentiation state of a cell to the shape changes of its nucleus are not well understood. We investigated this question in early Drosophila embryos, where the nuclear shape changes from spherical to ellipsoidal together with a 2.5-fold increase in nuclear length during cellularization. RESULTS: We identified two genes, kugelkern and kurzkern, required for nuclear elongation. In kugelkern- and kurzkern-depleted embryos, the nuclei reach only half the length of the wild-type nuclei at the end of cellularization. The reduced nuclear size affects chromocenter formation as marked by Heterochromatin protein 1 and expression of a specific set of genes, including early zygotic genes. kugelkern contains a putative coiled-coil domain in the N-terminal half of the protein, a nuclear localization signal (NLS), and a C-terminal CxxM-motif. The carboxyterminal CxxM motif is required for the targeting of Kugelkern to the inner nuclear membrane, where it colocalizes with lamins. Depending on the farnesylation motif, expression of kugelkern in Drosophila embryos or Xenopus cells induces overproliferation of nuclear membrane. CONCLUSIONS: Kugelkern is so far the first nuclear protein, except for lamins, that contains a farnesylation site. Our findings suggest that Kugelkern is a rate-determining factor for nuclear size increase. We propose that association of farnesylated Kugelkern with the inner nuclear membrane induces expansion of nuclear surface area, allowing nuclear growth.


Asunto(s)
Núcleo Celular/ultraestructura , Proteínas de Drosophila/fisiología , Drosophila/embriología , Drosophila/ultraestructura , Proteínas Nucleares/fisiología , Secuencias de Aminoácidos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Cinética , Larva/metabolismo , Larva/ultraestructura , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología , Membrana Nuclear/ultraestructura , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fenotipo , ARN/metabolismo , Xenopus
5.
Development ; 133(4): 711-23, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16421189

RESUMEN

Morphogenesis of epithelial tissues relies on the precise developmental control of cell polarity and architecture. In the early Drosophila embryo, the primary epithelium forms during cellularisation, following a tightly controlled genetic programme where specific sets of genes are upregulated. Some of them, for example, control membrane invagination between the nuclei anchored at the apical surface of the syncytium. We used microarrays to describe the global programme of gene expression underlying cellularisation and identified distinct classes of upregulated genes during this process. Fifty-seven genes were then tested functionally by RNAi. We found six genes affecting various aspects of cellular architecture: membrane growth, organelle transport or organisation and junction assembly. We focus here on charleston (char), a new regulator of nuclear morphogenesis and of apical nuclear anchoring. In char-depleted embryos, the nuclei fail to maintain their elongated shape and, instead, become rounded. In addition, together with a disruption of the centrosome-nuclear envelope interaction, the nuclei lose their regular apical anchoring. These nuclear defects perturb the regular columnar organisation of epithelial cells in the embryo. Although microtubules are required for both nuclear morphogenesis and anchoring, char does not control microtubule organisation and association to the nuclear envelope. We show that Char is lipid anchored at the nuclear envelope by a farnesylation group, and localises at the inner nuclear membrane together with Lamin. Our data suggest that Char forms a scaffold that regulates nuclear architecture to constrain nuclei in tight columnar epithelial cells. The upregulation of Char during cellularisation and gastrulation reveals the existence of an as yet unknown developmental control of nuclear morphology and anchoring in embryonic epithelia.


Asunto(s)
Núcleo Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Células Epiteliales/fisiología , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Animales , Núcleo Celular/ultraestructura , Células Cultivadas , Centrosoma/fisiología , Centrosoma/ultraestructura , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/fisiología , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Uniones Intercelulares/fisiología , Uniones Intercelulares/ultraestructura , Laminas/fisiología , Metionina/análogos & derivados , Metionina/farmacología , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Morfogénesis , Membrana Nuclear/fisiología , Membrana Nuclear/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
Dev Dyn ; 232(3): 685-94, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15712202

RESUMEN

During development, embryonic tissues are shaped in a species-specific manner. Yet, across species, general classes of tissue remodeling events occur, such as tissue infolding and tissue elongation. The spatiotemporal control of these morphogenetic processes is responsible for the organization of different body plans, as well as for organogenesis. Cell morphogenesis in a mesenchyme contributes to the shaping of embryonic tissues. Epithelial cells, despite that they need to maintain an apicobasal organization, play an equally important role during morphogenesis. Moving from apical to basal, we review compartmentalized cellular rearrangements underlying tissue remodeling in Drosophila and compare them with those found in other organisms. Contractile activity at the apical surface triggers tissue folding and invagination. The regulation of adhesion at adherens junctions controls polarized neighbor exchange during intercalation and tissue elongation. Basolateral protrusive activity underlies other cases of intercalation. These localized cell shape changes are spatially regulated by developmental signals. Some signals define a local change in cell behavior (e.g., apical constriction), others orient a dynamic process in the plane of the tissue (e.g., junction remodeling).


Asunto(s)
Polaridad Celular , Forma de la Célula , Epitelio/embriología , Morfogénesis , Actinas/metabolismo , Animales , Tipificación del Cuerpo , Adhesión Celular , Drosophila/citología , Drosophila/embriología , Drosophila/metabolismo , Embrión no Mamífero , Inducción Embrionaria , Epitelio/metabolismo , Humanos , Uniones Intercelulares , Mesodermo/citología , Mesodermo/metabolismo , Modelos Biológicos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA