Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(4): 104584, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889588

RESUMEN

Cardiac contraction is modulated by the phosphorylation state of myosin regulatory light chain 2 (MLC-2v). The level of MLC-2v phosphorylation is dependent on the opposing activities of MLC kinases and phosphatases. The predominant MLC phosphatase found in cardiac myocytes contains Myosin Phosphatase Targeting Subunit 2 (MYPT2). Overexpression of MYPT2 in cardiac myocytes results in a decreased level of MLC phosphorylation, reduced left ventricular contraction, and induction of hypertrophy; however, the effect of knocking out MYPT2 on cardiac function is unknown. We obtained heterozygous mice containing a MYPT2 null allele from the Mutant Mouse Resource Center. These mice were produced in a C57BL/6N background which lack MLCK3, the main regulatory light chain kinase in cardiac myocytes. We found that mice null for MYPT2 were viable and had no obvious phenotypic abnormality when compared to WT mice. Additionally, we determined that WT C57BL/6N mice had a low basal level of MLC-2v phosphorylation, which was significantly increased when MYPT2 was absent. At 12-weeks, MYPT2 KO mice had smaller hearts and showed downregulation of genes involved in cardiac remodeling. Using cardiac echo, we found that 24-week-old male MYPT2 KO mice had decreased heart size with increased fractional shortening compared to their MYPT2 WT littermates. Collectively, these studies highlight the important role that MYPT2 plays in cardiac function in vivo and demonstrate that its deletion can partially compensate for the lack of MLCK3.


Asunto(s)
Cardiopatías , Quinasa de Cadena Ligera de Miosina , Ratones , Masculino , Animales , Fosfatasa de Miosina de Cadena Ligera/genética , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo
2.
J Biol Chem ; 298(8): 102175, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752367

RESUMEN

Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways and are canonically activated by nitric oxide- and natriuretic peptide-induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here, we found that purified PKGIα stored in PBS with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with DTT. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIß activity only slightly increased with storage. Using PKGIα/PKGIß chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased vasodilator-stimulated phosphoprotein phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Peróxido de Hidrógeno , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Óxido Nítrico/metabolismo , Oxidantes , Oxidación-Reducción , Fosforilación
3.
Mol Cell ; 55(2): 264-76, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24981175

RESUMEN

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway integrates environmental clues to regulate cell growth and survival. We showed previously that depriving cells of a single essential amino acid rapidly and reversibly arrests purine synthesis. Here we demonstrate that amino acids via mammalian target of rapamycin 2 and IκB kinase regulate Akt activity and Akt association and phosphorylation of transketolase (TKT), a key enzyme of the nonoxidative pentose phosphate pathway (PPP). Akt phosphorylates TKT on Thr382, markedly enhancing enzyme activity and increasing carbon flow through the nonoxidative PPP, thereby increasing purine synthesis. Mice fed a lysine-deficient diet for 2 days show decreased Akt activity, TKT activity, and purine synthesis in multiple organs. These results provide a mechanism whereby Akt coordinates amino acid availability with glucose utilization, purine synthesis, and RNA and DNA synthesis.


Asunto(s)
Aminoácidos/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Purinas/biosíntesis , Transcetolasa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Células HeLa , Humanos , Quinasa I-kappa B/metabolismo , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Oxidación-Reducción , Fosforribosil Pirofosfato/biosíntesis , Fosforilación , Serina-Treonina Quinasas TOR/metabolismo
4.
J Biol Chem ; 295(30): 10394-10405, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32506052

RESUMEN

Type 1 cGMP-dependent protein kinases (PKGs) play important roles in human cardiovascular physiology, regulating vascular tone and smooth-muscle cell phenotype. A mutation in the human PRKG1 gene encoding cGMP-dependent protein kinase 1 (PKG1) leads to thoracic aortic aneurysms and dissections. The mutation causes an arginine-to-glutamine (RQ) substitution within the first cGMP-binding pocket in PKG1. This substitution disrupts cGMP binding to the pocket, but it also unexpectedly causes PKG1 to have high activity in the absence of cGMP via an unknown mechanism. Here, we identified the molecular mechanism whereby the RQ mutation increases basal kinase activity in the human PKG1α and PKG1ß isoforms. Although we found that the RQ substitution (R177Q in PKG1α and R192Q in PKG1ß) increases PKG1α and PKG1ß autophosphorylation in vitro, we did not detect increased autophosphorylation of the PKG1α or PKG1ß RQ variant isolated from transiently transfected 293T cells, indicating that increased basal activity of the RQ variants in cells was not driven by PKG1 autophosphorylation. Replacement of Arg-177 in PKG1α with alanine or methionine also increased basal activity. PKG1 exists as a parallel homodimer linked by an N-terminal leucine zipper, and we show that the WT chain in WT-RQ heterodimers partly reduces basal activity of the RQ chain. Using hydrogen/deuterium-exchange MS, we found that the RQ substitution causes PKG1ß to adopt an active conformation in the absence of cGMP, similar to that of cGMP-bound WT enzyme. We conclude that the RQ substitution in PKG1 increases its basal activity by disrupting the formation of an inactive conformation.


Asunto(s)
Aneurisma de la Aorta Torácica/enzimología , Disección Aórtica/enzimología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Mutación Missense , Multimerización de Proteína , Sustitución de Aminoácidos , Disección Aórtica/genética , Disección Aórtica/patología , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/patología , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Humanos , Fosforilación , Estructura Cuaternaria de Proteína
5.
J Biol Chem ; 292(20): 8262-8268, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28360102

RESUMEN

The type I cGMP-dependent protein kinases (PKGs) are key regulators of smooth muscle tone, cardiac hypertrophy, and other physiological processes. The two isoforms PKGIα and PKGIß are thought to have unique functions because of their tissue-specific expression, different cGMP affinities, and isoform-specific protein-protein interactions. Recently, a non-canonical pathway of PKGIα activation has been proposed, in which PKGIα is activated in a cGMP-independent fashion via oxidation of Cys43, resulting in disulfide formation within the PKGIα N-terminal dimerization domain. A "redox-dead" knock-in mouse containing a C43S mutation exhibits phenotypes consistent with decreased PKGIα signaling, but the detailed mechanism of oxidation-induced PKGIα activation is unknown. Therefore, we examined oxidation-induced activation of PKGIα, and in contrast to previous findings, we observed that disulfide formation at Cys43 does not directly activate PKGIα in vitro or in intact cells. In transfected cells, phosphorylation of Ras homolog gene family member A (RhoA) and vasodilator-stimulated phosphoprotein was increased in response to 8-CPT-cGMP treatment, but not when disulfide formation in PKGIα was induced by H2O2 Using purified enzymes, we found that the Cys43 oxidation had no effect on basal kinase activity or Km and Vmax values; however, PKGIα containing the C43S mutation was less responsive to cGMP-induced activation. This reduction in cGMP affinity may in part explain the PKGIα loss-of-function phenotype of the C43S knock-in mouse. In conclusion, disulfide formation at Cys43 does not directly activate PKGIα, and the C43S-mutant PKGIα has a higher Ka for cGMP. Our results highlight that mutant enzymes should be carefully biochemically characterized before making in vivo inferences.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Disulfuros/metabolismo , Multimerización de Proteína/fisiología , Sustitución de Aminoácidos , Animales , Línea Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Transgénicos , Mutación Missense , Oxidación-Reducción , Multimerización de Proteína/efectos de los fármacos , Tionucleótidos/farmacología
6.
Nitric Oxide ; 76: 62-70, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29550520

RESUMEN

Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.


Asunto(s)
Huesos/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Animales , Humanos
7.
Ann Emerg Med ; 69(6): 718-725.e4, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28041825

RESUMEN

STUDY OBJECTIVE: The 2 antidotes for acute cyanide poisoning in the United States must be administered by intravenous injection. In the out-of-hospital setting, intravenous injection is not practical, particularly for mass casualties, and intramuscular injection would be preferred. The purpose of this study is to determine whether sodium nitrite and sodium thiosulfate are effective cyanide antidotes when administered by intramuscular injection. METHODS: We used a randomized, nonblinded, parallel-group study design in 3 mammalian models: cyanide gas inhalation in mice, with treatment postexposure; intravenous sodium cyanide infusion in rabbits, with severe hypotension as the trigger for treatment; and intravenous potassium cyanide infusion in pigs, with apnea as the trigger for treatment. The drugs were administered by intramuscular injection, and all 3 models were lethal in the absence of therapy. RESULTS: We found that sodium nitrite and sodium thiosulfate individually rescued 100% of the mice, and that the combination of the 2 drugs rescued 73% of the rabbits and 80% of the pigs. In all 3 species, survival in treated animals was significantly better than in control animals (log rank test, P<.05). In the pigs, the drugs attenuated an increase in the plasma lactate concentration within 5 minutes postantidote injection (difference: plasma lactate, saline solution-treated versus nitrite- or thiosulfate-treated 1.76 [95% confidence interval 1.25 to 2.27]). CONCLUSION: We conclude that sodium nitrite and sodium thiosulfate administered by intramuscular injection are effective against severe cyanide poisoning in 3 clinically relevant animal models of out-of-hospital emergency care.


Asunto(s)
Antídotos/administración & dosificación , Antídotos/uso terapéutico , Cianuros/envenenamiento , Nitrito de Sodio/administración & dosificación , Nitrito de Sodio/uso terapéutico , Tiosulfatos/administración & dosificación , Tiosulfatos/uso terapéutico , Animales , Antídotos/farmacología , Modelos Animales de Enfermedad , Inyecciones Intramusculares , Masculino , Ratones , Conejos , Distribución Aleatoria , Nitrito de Sodio/farmacología , Sus scrofa , Tiosulfatos/farmacología
8.
J Biol Chem ; 288(23): 16557-16566, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23612967

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive, usually fatal disease with abnormal vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) from PAH patients are hyperproliferative and apoptosis-resistant and demonstrate decreased signaling in response to bone morphogenetic proteins (BMPs). Cyclic GMP-elevating agents are beneficial in PAH, but their mechanism(s) of action are incompletely understood. Here we show that BMP signaling via Smad1/5/8 requires cGMP-dependent protein kinase isotype I (PKGI) to maintain PASMCs in a differentiated, low proliferative state. BMP cooperation with cGMP/PKGI was crucial for transcription of contractile genes and suppression of pro-proliferative and anti-apoptotic genes. Lungs from mice with low or absent PKGI (Prkg1(+/-) and Prkg1(-/-) mice) exhibited impaired BMP signaling, decreased contractile gene expression, and abnormal vascular remodeling. Conversely, cGMP stimulation of PKGI restored defective BMP signaling in rats with hypoxia-induced PAH, consistent with cGMP-elevating agents reversing vascular remodeling in this PAH model. Our results provide a mechanism for the therapeutic effects of cGMP-elevating agents in PAH and suggest that combining them with BMP mimetics may provide a novel, disease-modifying approach to PAH therapy.


Asunto(s)
GMP Cíclico/metabolismo , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Línea Celular Transformada , GMP Cíclico/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Metaloproteinasas de la Matriz Secretadas/genética , Metaloproteinasas de la Matriz Secretadas/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Ratas , Transducción de Señal/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo
9.
Biochem J ; 454(1): 91-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23734909

RESUMEN

Cells must increase synthesis of purine nucleotides/deoxynucleotides before or during S-phase. We found that rates of purine synthesis via the de novo and salvage pathways increased 5.0- and 3.3-fold respectively, as cells progressed from mid-G1-phase to early S-phase. The increased purine synthesis could be attributed to a 3.2-fold increase in intracellular PRPP (5-phosphoribosyl-α-1-pyrophosphate), a rate-limiting substrate for de novo and salvage purine synthesis. PRPP can be produced by the oxidative and non-oxidative pentose phosphate pathways, and we found a 3.1-fold increase in flow through the non-oxidative pathway, with no change in oxidative pathway activity. Non-oxidative pentose phosphate pathway enzymes showed no change in activity, but PRPP synthetase is regulated by phosphate, and we found that phosphate uptake and total intracellular phosphate concentration increased significantly between mid-G1-phase and early S-phase. Over the same time period, PRPP synthetase activity increased 2.5-fold when assayed in the absence of added phosphate, making enzyme activity dependent on cellular phosphate at the time of extraction. We conclude that purine synthesis increases as cells progress from G1- to S-phase, and that the increase is from heightened PRPP synthetase activity due to increased intracellular phosphate.


Asunto(s)
Ciclo Celular/fisiología , Fosfatos/fisiología , Fosforribosil Pirofosfato/fisiología , Purinas/biosíntesis , Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HCT116 , Humanos
10.
Sci Signal ; 17(821): eadi7861, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289986

RESUMEN

Androgen binding to the androgen receptor (AR) in the cytoplasm induces the AR to translocate to the nucleus, where it regulates the expression of target genes. Here, we found that androgens rapidly activated a plasma membrane-associated signaling node that enhanced nuclear AR functions. In murine primary osteoblasts, dihydrotestosterone (DHT) binding to a membrane-associated form of AR stimulated plasma membrane-associated protein kinase G type 2 (PKG2), leading to the activation of multiple kinases, including ERK. Phosphorylation of AR at Ser515 by ERK increased the nuclear accumulation and binding of AR to the promoter of Ctnnb1, which encodes the transcription factor ß-catenin. In male mouse osteoblasts and human prostate cancer cells, DHT induced the expression of Ctnnb1 and CTNN1B, respectively, as well as ß-catenin target genes, stimulating the proliferation, survival, and differentiation of osteoblasts and the proliferation of prostate cancer cells in a PKG2-dependent fashion. Because ß-catenin is a master regulator of skeletal homeostasis, these results explain the reported male-specific osteoporotic phenotype of mice lacking PKG2 in osteoblasts and imply that PKG2-dependent AR signaling is essential for maintaining bone mass in vivo. Our results suggest that widely used pharmacological PKG activators, such as sildenafil, could be beneficial for male and estrogen-deficient female patients with osteoporosis but detrimental in patients with prostate cancer.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Andrógenos/farmacología , Andrógenos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Dihidrotestosterona/farmacología , Dihidrotestosterona/metabolismo , Osteoblastos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
11.
JCI Insight ; 9(14)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885330

RESUMEN

Osteoporotic fractures are a major complication of long-term glucocorticoid therapy. Glucocorticoids transiently increase bone resorption, but they predominantly inhibit bone formation and induce osteocyte apoptosis, leading to bone loss. Current treatments of glucocorticoid-induced osteoporosis aim mainly at reducing bone resorption and are, therefore, inadequate. We previously showed that signaling via the NO/cGMP/protein kinase G pathway plays a key role in skeletal homeostasis. Here, we show that pharmacological PKG activation with the guanylyl cyclase-1 activator cinaciguat or expression of a constitutively active, mutant PKG2R242Q restored proliferation, differentiation, and survival of primary mouse osteoblasts exposed to dexamethasone. Cinaciguat treatment of WT mice or osteoblast-specific expression of PKG2R242Q in transgenic mice prevented dexamethasone-induced loss of cortical bone mass and strength. These effects of cinaciguat and PKG2R242Q expression were due to preserved bone formation parameters and osteocyte survival. The basis for PKG2's effects appeared to be through recovery of Wnt/ß-catenin signaling, which was suppressed by glucocorticoids but critical for proliferation, differentiation, and survival of osteoblast-lineage cells. Cinaciguat reduced dexamethasone activation of osteoclasts, but this did not occur in the PKG2R242Q transgenic mice, suggesting a minor role in osteoprotection. We propose that existing PKG-targeting drugs could represent a novel therapeutic approach to prevent glucocorticoid-induced osteoporosis.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Dexametasona , Glucocorticoides , Ratones Transgénicos , Osteoblastos , Osteoporosis , Vía de Señalización Wnt , Animales , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Osteoporosis/patología , Ratones , Glucocorticoides/efectos adversos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Dexametasona/farmacología , Dexametasona/efectos adversos , Vía de Señalización Wnt/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Diferenciación Celular/efectos de los fármacos , Osteocitos/metabolismo , Osteocitos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Proliferación Celular/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
12.
JACC Basic Transl Sci ; 9(1): 46-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362350

RESUMEN

Major pathologic changes in the proximal aorta underlie the life-threatening aortic aneurysms and dissections in Marfan Syndrome; current treatments delay aneurysm development without addressing the primary pathology. Because excess oxidative stress and nitric oxide/protein kinase G signaling likely contribute to the aortopathy, we hypothesized that cobinamide, a strong antioxidant that can attenuate nitric oxide signaling, could be uniquely suited to prevent aortic disease. In a well-characterized mouse model of Marfan Syndrome, cobinamide dramatically reduced elastin breaks, prevented excess collagen deposition and smooth muscle cell apoptosis, and blocked DNA, lipid, and protein oxidation and excess nitric oxide/protein kinase G signaling in the ascending aorta. Consistent with preventing pathologic changes, cobinamide diminished aortic root dilation without affecting blood pressure. Cobinamide exhibited excellent safety and pharmacokinetic profiles indicating it could be a practical treatment. We conclude that cobinamide deserves further study as a disease-modifying treatment of Marfan Syndrome.

13.
J Biol Chem ; 287(2): 978-88, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22117068

RESUMEN

Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17ß-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17ß-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17ß-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17ß-estradiol required BAD phosphorylation on Ser(136) and Ser(155); these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17ß-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Óxido Nítrico/metabolismo , Osteocitos/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diferenciación Celular/fisiología , Línea Celular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osteocitos/citología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Letal Asociada a bcl/metabolismo
14.
J Biol Chem ; 287(25): 21509-19, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22563076

RESUMEN

Mechanical loading of bone induces interstitial fluid flow, leading to fluid shear stress (FSS) of osteoblasts. FSS rapidly increases the intracellular calcium concentration ([Ca(2+)]) and nitric oxide (NO) synthesis in osteoblasts and activates the protein kinase Akt. Activated Akt stimulates osteoblast proliferation and survival, but the mechanism(s) leading to Akt activation is not well defined. Using pharmacological and genetic approaches in primary human and mouse osteoblasts and mouse MC3T3 osteoblast-like cells, we found that Akt activation by FSS occurred through two parallel pathways; one required calcium stimulation of NO synthase and NO/cGMP/protein kinase G II-dependent activation of Src, and the other required calcium activation of FAK and Src, independent of NO. Both pathways cooperated to increase PI3K-dependent Akt phosphorylation and were necessary for FSS to induce nuclear translocation of ß-catenin, c-fos, and cox-2 gene expression and osteoblast proliferation. These data explain how mechanical stimulation of osteoblasts leads to increased signaling through a growth regulatory pathway essential for maintaining skeletal integrity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Mecanotransducción Celular/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo II , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Quinasa 1 de Adhesión Focal/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , beta Catenina/genética , Familia-src Quinasas/genética
15.
J Biol Chem ; 287(45): 38367-78, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22992742

RESUMEN

We performed a proteomics screen for Rho isoform-specific binding proteins to clarify the tumor-promoting effects of RhoA and C that contrast with the tumor-suppressive effects of RhoB. We found that the IQ-motif-containing GTPase-activating protein IQGAP1 interacts directly with GTP-bound, prenylated RhoA and RhoC, but not with RhoB. Co-immunoprecipitation of IQGAP1 with endogenous RhoA/C was enhanced when RhoA/C were activated by epidermal growth factor (EGF) or transfection of a constitutively active guanine nucleotide exchange factor (GEF). Overexpression of IQGAP1 increased GTP-loading of RhoA/C, while siRNA-mediated depletion of IQGAP1 prevented endogenous RhoA/C activation by growth factors. IQGAP1 knockdown also reduced the amount of GTP bound to GTPase-deficient RhoA/C mutants, suggesting that IQGAP enhances Rho activation by GEF(s) or stabilizes Rho-GTP. IQGAP1 depletion in MDA-MB-231 breast cancer cells blocked EGF- and RhoA-induced stimulation of DNA synthesis. Infecting cells with adenovirus encoding constitutively active RhoA(L63) and measuring absolute amounts of RhoA-GTP in infected cells demonstrated that the lack of RhoA(L63)-induced DNA synthesis in IQGAP1-depleted cells was not due to reduced GTP-bound RhoA. These data suggested that IQGAP1 functions downstream of RhoA. Overexpression of IQGAP1 in MDA-MB-231 cells increased DNA synthesis irrespective of siRNA-mediated RhoA knockdown. Breast cancer cell motility was increased by expressing a constitutively-active RhoC(V14) mutant or overexpressing IQGAP1. EGF- or RhoC-induced migration required IQGAP1, but IQGAP1-stimulated migration independently of RhoC, placing IQGAP1 downstream of RhoC. We conclude that IQGAP1 acts both upstream of RhoA/C, regulating their activation state, and downstream of RhoA/C, mediating their effects on breast cancer cell proliferation and migration, respectively.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Unión Competitiva , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Unión Proteica , Prenilación de Proteína , Proteómica , Interferencia de ARN , Proteínas Activadoras de ras GTPasa/genética , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoB/genética , Proteína rhoC de Unión a GTP
16.
J Bone Miner Res ; 38(1): 171-185, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371651

RESUMEN

We previously showed that the NO/cGMP/protein kinase G (PKG) signaling pathway positively regulates osteoblast proliferation, differentiation, and survival in vitro, and that cGMP-elevating agents have bone-anabolic effects in mice. Here, we generated mice with an osteoblast-specific (OB) knockout (KO) of type 2 PKG (gene name Prkg2) using a Col1a1(2.3 kb)-Cre driver. Compared to wild type (WT) littermates, 8-week-old male OB Prkg2-KO mice had fewer osteoblasts, reduced bone formation rates, and lower trabecular and cortical bone volumes. Female OB Prkg2-KO littermates showed no bone abnormalities, despite the same degree of PKG2 deficiency in bone. Expression of osteoblast differentiation- and Wnt/ß-catenin-related genes was lower in primary osteoblasts and bones of male KO but not female KO mice compared to WT littermates. Osteoclast parameters were unaffected in both sexes. Since PKG2 is part of a mechano-sensitive complex in osteoblast membranes, we examined its role during mechanical loading. Cyclical compression of the tibia increased cortical thickness and induced mechanosensitive and Wnt/ß-catenin-related genes to a similar extent in male and female WT mice and female OB Prkg2-KO mice, but loading had a minimal effect in male KO mice. We conclude that PKG2 drives bone acquisition and adaptation to mechanical loading via the Wnt/ß-catenin pathway in male mice. The striking sexual dimorphism of OB Prkg2-KO mice suggests that current U.S. Food and Drug Administration-approved cGMP-elevating agents may represent novel effective treatment options for male osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos , beta Catenina , Femenino , Animales , Ratones , Masculino , beta Catenina/metabolismo , Huesos/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Ratones Noqueados , Vía de Señalización Wnt , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Homeostasis
17.
Clin Toxicol (Phila) ; 61(4): 212-222, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37010385

RESUMEN

CONTEXT: The azide anion (N3-) is highly toxic. It exists most commonly as sodium azide, which is used widely and is readily available, raising the potential for occupational incidents and use as a weapon of mass destruction. Azide-poisoned patients present with vomiting, seizures, hypotension, metabolic acidosis, and coma; death can occur. No specific azide antidote exists, with treatment being solely supportive. Azide inhibits mitochondrial cytochrome c oxidase and is likely oxidized to nitric oxide in vivo. Cytochrome c oxidase inhibition depletes intracellular adenosine triphosphate and increases oxidative stress, while increased nitric oxide causes hypotension and exacerbates oxidative damage. Here, we tested whether the cobalamin (vitamin B12) analog cobinamide, a strong and versatile antioxidant that also neutralizes nitric oxide, can reverse azide toxicity in mammalian cells, Drosophila melanogaster, and mice. RESULTS: We found cobinamide bound azide with a moderate affinity (Ka 2.87 × 105 M-1). Yet, cobinamide improved growth, increased intracellular adenosine triphosphate, and reduced apoptosis and malondialdehyde, a marker of oxidative stress, in azide-exposed cells. Cobinamide rescued Drosophila melanogaster and mice from lethal exposure to azide and was more effective than hydroxocobalamin. Azide likely generated nitric oxide in the mice, as evidenced by increased serum nitrite and nitrate, and reduced blood pressure and peripheral body temperature in the animals; the reduced temperature was likely due to reflex vasoconstriction in response to the hypotension. Cobinamide improved recovery of both blood pressure and body temperature. CONCLUSION: We conclude cobinamide likely acted by neutralizing both oxidative stress and nitric oxide, and that it should be given further consideration as an azide antidote.


Asunto(s)
Hipotensión , Vitamina B 12 , Ratones , Animales , Drosophila melanogaster/metabolismo , Azidas/metabolismo , Antídotos/farmacología , Óxido Nítrico , Complejo IV de Transporte de Electrones/metabolismo , Cobamidas , Adenosina Trifosfato , Vitaminas , Mamíferos/metabolismo
18.
PNAS Nexus ; 1(4): pgac191, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36276587

RESUMEN

Increased oxidative stress underlies a variety of diseases, including diabetes. Here, we show that the cobalamin/vitamin B12 analog cobinamide is a strong and multifaceted antioxidant, neutralizing superoxide, hydrogen peroxide, and peroxynitrite, with apparent rate constants of 1.9 × 108, 3.7 × 104, and 6.3 × 106 M-1 s-1, respectively, for cobinamide with the cobalt in the +2 oxidation state. Cobinamide with the cobalt in the +3 oxidation state yielded apparent rate constants of 1.1 × 108 and 8.0 × 102 M-1 s-1 for superoxide and hydrogen peroxide, respectively. In mammalian cells and Drosophila melanogaster, cobinamide outperformed cobalamin and two well-known antioxidants, imisopasem manganese and manganese(III)tetrakis(4-benzoic acid)porphyrin, in reducing oxidative stress as evidenced by: (i) decreased mitochondrial superoxide and return of the mitochondrial membrane potential in rotenone- and antimycin A-exposed H9c2 rat cardiomyocytes; (ii) reduced JNK phosphorylation in hydrogen-peroxide-treated H9c2 cells; (iii) increased growth in paraquat-exposed COS-7 fibroblasts; and (iv) improved survival in paraquat-treated flies. In diabetic mice, cobinamide administered in the animals' drinking water completely prevented an increase in lipid and protein oxidation, DNA damage, and fibrosis in the heart. Cobinamide is a promising new antioxidant that has potential use in diseases with heightened oxidative stress.

19.
Br J Pharmacol ; 179(11): 2413-2429, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34000062

RESUMEN

BACKGROUND AND PURPOSE: Heart failure is associated with high morbidity and mortality, and new therapeutic targets are needed. Preclinical data suggest that pharmacological activation of protein kinase G (PKG) can reduce maladaptive ventricular remodelling and cardiac dysfunction in the stressed heart. However, clinical trial results have been mixed and the effects of long-term PKG activation in the heart are unknown. EXPERIMENTAL APPROACH: We characterized the cardiac phenotype of mice carrying a heterozygous knock-in mutation of PKG1 (Prkg1R177Q/+ ), which causes constitutive, cGMP-independent activation of the kinase. We examined isolated cardiac myocytes and intact mice, the latter after stress induced by surgical transaortic constriction or angiotensin II (Ang II) infusion. KEY RESULTS: Cardiac myocytes from Prkg1R177Q/+ mice showed altered phosphorylation of sarcomeric proteins and reduced contractility in response to electrical stimulation, compared to cells from wild type mice. Under basal conditions, young PKG1R177Q/+ mice exhibited no obvious cardiac abnormalities, but aging animals developed mild increases in cardiac fibrosis. In response to angiotensin II infusion or fixed pressure overload induced by transaortic constriction, young PKGR177Q/+ mice exhibited excessive hypertrophic remodelling with increased fibrosis and myocyte apoptosis, leading to increased left ventricular dilation and dysfunction compared to wild type litter mates. CONCLUSION AND IMPLICATIONS: Long-term PKG1 activation in mice may be harmful to the heart, especially in the presence of pressure overload and neurohumoral stress. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Asunto(s)
Angiotensina II , Cardiomiopatías , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Remodelación Ventricular
20.
Clin Toxicol (Phila) ; 60(3): 332-341, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34328378

RESUMEN

CONTEXT: Hydrogen cyanide and methanethiol are two toxic gases that inhibit mitochondrial cytochrome c oxidase. Cyanide is generated in structural fires and methanethiol is released by decaying organic matter. Current treatments for cyanide exposure do not lend themselves to treatment in the field and no treatment exists for methanethiol poisoning. Sodium tetrathionate (tetrathionate), a product of thiosulfate oxidation, could potentially serve as a cyanide antidote, and, based on its chemical structure, we hypothesized it could react with methanethiol. RESULTS: We show that tetrathionate, unlike thiosulfate, reacts directly with cyanide in vitro under physiological conditions, and based on rabbit studies where we monitor cyanide poisoning in real-time, tetrathionate likely reacts directly with cyanide in vivo. We found that tetrathionate administered by intramuscular injection rescues >80% of juvenile, young adult, and old adult mice from exposure to inhaled hydrogen cyanide gas that is >80% lethal. Tetrathionate also rescued young adult rabbits from intravenously administered sodium cyanide. Tetrathionate was reasonably well-tolerated by mice and rats, yielding a therapeutic index of ∼5 in juvenile and young adult mice, and ∼3.3 in old adult mice; it was non-mutagenic in Chinese Hamster ovary cells and by the Ames bacterial test. We found by gas chromatography-mass spectrometry that both tetrathionate and thiosulfate react with methanethiol to generate dimethyldisulfide, but that tetrathionate was much more effective than thiosulfate at recovering intracellular ATP in COS-7 cells and rescuing mice from a lethal exposure to methanethiol gas. CONCLUSION: We conclude that tetrathionate has the potential to be an effective antidote against cyanide and methanethiol poisoning.


Asunto(s)
Antídotos , Ácido Tetratiónico , Animales , Antídotos/uso terapéutico , Células CHO , Cricetinae , Cricetulus , Cianuros , Humanos , Ratones , Conejos , Ratas , Compuestos de Sulfhidrilo , Tiosulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA