Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(15): 6616-6627, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569050

RESUMEN

While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of "expert-reviewed journalism" involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the "Forever Pollution Project" (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as "unseen science". The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 "presumptive contamination sites", including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 "known PFAS users", a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental , Europa (Continente) , Comercio
2.
Org Biomol Chem ; 16(14): 2508-2521, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29565074

RESUMEN

The human urinary long-term metabolite "M3" (4-chloro-17ß-hydroxymethyl-17α-methyl-18-norandrost-13-en-3-ol) of the common doping agent DHCMT has thus far been detected via GC/MS-MS, creating ambiguities concerning its absolute configuration. Its structure was elucidated via the synthesis of all eight possible stereoisomers with 17ß-hydroxymethyl configuration. The highlights of the synthesis consist of a novel first generation approach to 4ß-chloro-5ß compounds as well as a divergent route which allows easy access to the remaining A-ring chlorohydrins.


Asunto(s)
Testosterona/análogos & derivados , Testosterona/síntesis química , Estereoisomerismo
3.
Front Neuroinform ; 15: 723406, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603002

RESUMEN

The SPADE (spatio-temporal Spike PAttern Detection and Evaluation) method was developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel spike trains). However, depending on the number of spike trains and the length of recording, this method can exhibit long runtimes. Based on a realistic benchmark data set, we identified that the combination of pattern mining (using the FP-Growth algorithm) and the result filtering account for 85-90% of the method's total runtime. Therefore, in this paper, we propose a customized FP-Growth implementation tailored to the requirements of SPADE, which significantly accelerates pattern mining and result filtering. Our version allows for parallel and distributed execution, and due to the improvements made, an execution on heterogeneous and low-power embedded devices is now also possible. The implementation has been evaluated using a traditional workstation based on an Intel Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver platform RECS|Box has been used for evaluating the implementation on two HiSilicon Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX, and Jetson TX2). Depending on the platform, our implementation is between 27 and 200 times faster than the original implementation. At the same time, the energy consumption was reduced by up to two orders of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA