Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2310404120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147551

RESUMEN

Newly synthesized secretory proteins are exported from the endoplasmic reticulum (ER) at specialized subcompartments called exit sites (ERES). Cargoes like procollagen are too large for export by the standard COPII-coated vesicle of 60 nm average diameter. We have previously suggested that procollagen is transported from the ER to the next secretory organelle, the ER-Golgi intermediate compartment (ERGIC), in TANGO1-dependent interorganelle tunnels. In the theoretical model presented here, we suggest that intrinsically disordered domains of TANGO1 in the ER lumen induce an entropic contraction, which exerts a force that draws procollagen toward the ERES. Within this framework, molecular gradients of pH and/or HSP47 between the ER and ERGIC create a force in the order of tens of femto-Newtons. This force is substantial enough to propel procollagen from the ER at a speed of approximately 1 nm · s-1. This calculated speed and the quantities of collagen secreted are similar to its observed physiological secretion rate in fibroblasts, consistent with the proposal that ER export is the rate-limiting step for procollagen secretion. Hence, the mechanism we propose is theoretically adequate to explain how cells can utilize molecular gradients and export procollagens at a rate commensurate with physiological needs.


Asunto(s)
Colágeno , Procolágeno , Procolágeno/metabolismo , Transporte de Proteínas/fisiología , Colágeno/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
2.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37106230

RESUMEN

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Asunto(s)
Lípidos , Proteínas de la Membrana , Espectrometría de Masas/métodos , Transporte Biológico , Lípidos/química , Proteínas de la Membrana/química , Membrana Dobles de Lípidos/química
3.
Proc Natl Acad Sci U S A ; 120(44): e2306086120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883433

RESUMEN

Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.


Asunto(s)
Diglicéridos , Proteínas SNARE , Proteínas SNARE/metabolismo , Diglicéridos/metabolismo , Sinapsis/metabolismo , Chaperonas Moleculares/metabolismo , Fosfolípidos/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(45): e2311484120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903271

RESUMEN

The synaptic vesicle protein Synaptophysin (Syp) has long been known to form a complex with the Vesicle associated soluble N-ethylmaleimide sensitive fusion protein attachment receptor (v-SNARE) Vesicle associated membrane protein (VAMP), but a more specific molecular function or mechanism of action in exocytosis has been lacking because gene knockouts have minimal effects. Utilizing fully defined reconstitution and single-molecule measurements, we now report that Syp functions as a chaperone that determines the number of SNAREpins assembling between a ready-release vesicle and its target membrane bilayer. Specifically, Syp directs the assembly of 12 ± 1 SNAREpins under each docked vesicle, even in the face of an excess of SNARE proteins. The SNAREpins assemble in successive waves of 6 ± 1 and 5 ± 2 SNAREpins, respectively, tightly linked to oligomerization of and binding to the vesicle Ca++ sensor Synaptotagmin. Templating of 12 SNAREpins by Syp is likely the direct result of its hexamer structure and its binding of VAMP2 dimers, both of which we demonstrate in detergent extracts and lipid bilayers.


Asunto(s)
Fusión de Membrana , Vesículas Sinápticas , Sinaptofisina/genética , Sinaptofisina/metabolismo , Fusión de Membrana/fisiología , Vesículas Sinápticas/metabolismo , Sinaptotagminas/metabolismo , Proteínas SNARE/metabolismo , Exocitosis/fisiología
5.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495324

RESUMEN

Vesicle fusion with a target membrane is a key event in cellular trafficking and ensures cargo transport within the cell and between cells. The formation of a protein complex, called SNAREpin, provides the energy necessary for the fusion process. In a three-dimensional microfluidic chip, we monitored the fusion of small vesicles with a suspended asymmetric lipid bilayer. Adding ion channels into the vesicles, our setup allows the observation of a single fusion event by electrophysiology with 10-µs precision. Intriguingly, we identified that small transient fusion pores of discrete sizes reversibly opened with a characteristic lifetime of ∼350 ms. The distribution of their apparent diameters displayed two peaks, at 0.4 ± 0.1 nm and 0.8 ± 0.2 nm. Varying the number of SNAREpins, we demonstrated that the first peak corresponds to fusion pores induced by a single SNAREpin and the second peak is associated with pores involving two SNAREpins acting simultaneously. The pore size fluctuations provide a direct estimate of the energy landscape of the pore. By extrapolation, the energy landscape for three SNAREpins does not exhibit any thermally significant energy barrier, showing that pores larger than 1.5 nm are spontaneously produced by three or more SNAREpins acting simultaneously, and expand indefinitely. Our results quantitatively explain why one SNAREpin is sufficient to open a fusion pore and more than three SNAREpins are required for cargo release. Finally, they also explain why a machinery that synchronizes three SNAREpins, or more, is mandatory to ensure fast neurotransmitter release during synaptic transmission.


Asunto(s)
Fusión de Membrana , Proteínas SNARE/metabolismo , Metabolismo Energético
6.
Proc Natl Acad Sci U S A ; 116(7): 2435-2442, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30700546

RESUMEN

SNARE proteins zipper to form complexes (SNAREpins) that power vesicle fusion with target membranes in a variety of biological processes. A single SNAREpin takes about 1 s to fuse two bilayers, yet a handful can ensure release of neurotransmitters from synaptic vesicles much faster: in a 10th of a millisecond. We propose that, similar to the case of muscle myosins, the ultrafast fusion results from cooperative action of many SNAREpins. The coupling originates from mechanical interactions induced by confining scaffolds. Each SNAREpin is known to have enough energy to overcome the fusion barrier of 25-[Formula: see text]; however, the fusion barrier only becomes relevant when the SNAREpins are nearly completely zippered, and from this state, each SNAREpin can deliver only a small fraction of this energy as mechanical work. Therefore, they have to act cooperatively, and we show that at least three of them are needed to ensure fusion in less than a millisecond. However, to reach the prefusion state collectively, starting from the experimentally observed half-zippered metastable state, the SNAREpins have to mechanically synchronize, which takes more time as the number of SNAREpins increases. Incorporating this somewhat counterintuitive idea in a simple coarse-grained model results in the prediction that there should be an optimum number of SNAREpins for submillisecond fusion: three to six over a wide range of parameters. Interestingly, in situ cryoelectron microscope tomography has very recently shown that exactly six SNAREpins participate in the fusion of each synaptic vesicle. This number is in the range predicted by our theory.


Asunto(s)
Proteínas SNARE/fisiología , Animales , Microscopía por Crioelectrón , Fusión de Membrana , Modelos Biológicos , Unión Proteica , Proteínas SNARE/metabolismo
7.
EMBO J ; 36(2): 183-201, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27940654

RESUMEN

Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin ß1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that ß1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.


Asunto(s)
Membrana Basal/fisiología , Endotelio Vascular/fisiología , Laminina/metabolismo , Estrés Mecánico , Estrés Fisiológico , Animales , Células Cultivadas , Humanos , Ratones , Ratones Noqueados
8.
Proc Natl Acad Sci U S A ; 114(6): 1238-1241, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115718

RESUMEN

Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.


Asunto(s)
Fusión de Membrana , Lípidos de la Membrana/química , Microscopía Electrónica , Modelos Biológicos , Temperatura
9.
Small ; 15(21): e1900725, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30977975

RESUMEN

Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.


Asunto(s)
Microfluídica/métodos , Impresión Tridimensional , Dimetilpolisiloxanos/química , Recuperación de Fluorescencia tras Fotoblanqueo , Membrana Dobles de Lípidos/química
10.
Proc Natl Acad Sci U S A ; 113(38): 10536-41, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601655

RESUMEN

Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.


Asunto(s)
Complejos Multiproteicos/genética , Proteínas SNARE/genética , Transmisión Sináptica/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Animales , Fenómenos Biofísicos , Fusión de Membrana/genética , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(13): 3533-8, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26979957

RESUMEN

Many prominent biological processes are driven by protein assembling between membranes. Understanding the mechanisms then entails determining the assembling pathway of the involved proteins. Because the intermediates are by nature transient and located in the intermembrane space, this determination is generally a very difficult, not to say intractable, problem. Here, by designing a setup with sphere/plane geometry, we have been able to freeze one transient state in which the N-terminal domains of SNARE proteins are assembled. A single camera frame is sufficient to obtain the complete probability of this state with the transmembrane distance. We show that it forms when membranes are 20 nm apart and stabilizes by further assembling of the SNAREs at 8 nm. This setup that fixes the intermembrane distance, and thereby the transient states, while optically probing the level of molecular assembly by Förster resonance energy transfer (FRET) can be used to characterize any other transient transmembrane complexes.


Asunto(s)
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animales , Diseño de Equipo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Fusión de Membrana/fisiología , Ratones , Modelos Moleculares , Pinzas Ópticas , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/genética
12.
Proc Natl Acad Sci U S A ; 113(50): E8031-E8040, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911771

RESUMEN

Synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary target (t)-SNARE complex on the target plasma membrane, which then zippers with the vesicle (v)-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds, and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled the synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed C terminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT, where kB is the Boltzmann constant and T is 300 K. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by the mammalian uncoordinated-18-1 protein (Munc18-1). The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional t-SNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acted as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission.


Asunto(s)
Proteínas SNARE/química , Secuencia de Aminoácidos , Animales , Fusión de Membrana , Ratones , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Proteínas Munc18/química , Proteínas Munc18/fisiología , Pinzas Ópticas , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/fisiología , Proteínas SNARE/genética , Proteínas SNARE/fisiología , Transmisión Sináptica/fisiología , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/fisiología , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/fisiología
13.
Langmuir ; 34(20): 5849-5859, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29694054

RESUMEN

In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO2 holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana , Cinética , Proteínas SNARE/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo
14.
Angew Chem Int Ed Engl ; 57(19): 5330-5334, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29575478

RESUMEN

A major goal of nanotechnology and bioengineering is to build artificial nanomachines capable of generating specific membrane curvatures on demand. Inspired by natural membrane-deforming proteins, we designed DNA-origami curls that polymerize into nanosprings and show their efficacy in vesicle deformation. DNA-coated membrane tubules emerge from spherical vesicles when DNA-origami polymerization or high membrane-surface coverage occurs. Unlike many previous methods, the DNA self-assembly-mediated membrane tubulation eliminates the need for detergents or top-down manipulation. The DNA-origami design and deformation conditions have substantial influence on the tubulation efficiency and tube morphology, underscoring the intricate interplay between lipid bilayers and vesicle-deforming DNA structures.


Asunto(s)
ADN/química , Nanoestructuras/química , Nanotecnología , ADN/síntesis química , Membrana Dobles de Lípidos/química , Microscopía Fluorescente , Conformación de Ácido Nucleico , Polimerizacion
15.
Development ; 141(19): 3732-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209248

RESUMEN

Little is known about the molecular mechanisms that induce gamete fusion during mammalian fertilization. After initial contact, adhesion between gametes only leads to fusion in the presence of three membrane proteins that are necessary, but insufficient, for fusion: Izumo1 on sperm, its receptor Juno on egg and Cd9 on egg. What happens during this adhesion phase is a crucial issue. Here, we demonstrate that the intercellular adhesion that Izumo1 creates with Juno is conserved in mouse and human eggs. We show that, along with Izumo1, egg Cd9 concomitantly accumulates in the adhesion area. Without egg Cd9, the recruitment kinetics of Izumo1 are accelerated. Our results suggest that this process is conserved across species, as the adhesion partners, Izumo1 and its receptor, are interchangeable between mouse and human. Our findings suggest that Cd9 is a partner of Juno, and these discoveries allow us to propose a new model of the molecular mechanisms leading to gamete fusion, in which the adhesion-induced membrane organization assembles all key players of the fusion machinery.


Asunto(s)
Fertilización/fisiología , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Interacciones Espermatozoide-Óvulo/fisiología , Tetraspanina 29/metabolismo , Animales , Adhesión Celular/fisiología , Femenino , Humanos , Cinética , Masculino , Ratones , Microscopía Confocal
16.
Proc Natl Acad Sci U S A ; 111(38): 13966-71, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201968

RESUMEN

The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.


Asunto(s)
Calcio/química , Membrana Dobles de Lípidos/química , Complejos Multiproteicos/química , Proteínas SNARE/química , Sinaptotagmina I/química , Humanos , Complejos Multiproteicos/ultraestructura , Estructura Terciaria de Proteína
17.
J Am Chem Soc ; 138(13): 4439-47, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26938705

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.


Asunto(s)
ADN/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , ADN de Cadena Simple/química , Membrana Dobles de Lípidos/química , Liposomas/química , Fusión de Membrana , Unión Proteica
19.
Proc Natl Acad Sci U S A ; 110(33): 13244-9, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23901109

RESUMEN

Intracellular trafficking between organelles is achieved by coat protein complexes, coat protomers, that bud vesicles from bilayer membranes. Lipid droplets are protected by a monolayer and thus seem unsuitable targets for coatomers. Unexpectedly, coat protein complex I (COPI) is required for lipid droplet targeting of some proteins, suggesting a possible direct interaction between COPI and lipid droplets. Here, we find that COPI coat components can bud 60-nm triacylglycerol nanodroplets from artificial lipid droplet (LD) interfaces. This budding decreases phospholipid packing of the monolayer decorating the mother LD. As a result, hydrophobic triacylglycerol molecules become more exposed to the aqueous environment, increasing LD surface tension. In vivo, this surface tension increase may prime lipid droplets for reactions with neighboring proteins or membranes. It provides a mechanism fundamentally different from transport vesicle formation by COPI, likely responsible for the diverse lipid droplet phenotypes associated with depletion of COPI subunits.


Asunto(s)
Proteína Coat de Complejo I/química , Membrana Dobles de Lípidos/química , Transporte de Proteínas/fisiología , Vesículas Transportadoras/química , Factor 1 de Ribosilacion-ADP/genética , Animales , Escherichia coli , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica , Fosfatidilcolinas , Fosfatidiletanolaminas , Fosfolípidos/química , Células Sf9 , Espectrometría de Fluorescencia , Spodoptera , Tensión Superficial , Triglicéridos/química , Agua/química
20.
Langmuir ; 31(25): 7091-9, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26038815

RESUMEN

Giant unilamellar vesicles (GUVs), composed of a phospholipid bilayer, are often used as a model system for cell membranes. However, the study of proteo-membrane interactions in this system is limited as the incorporation of integral and lipid-anchored proteins into GUVs remains challenging. Here, we present a simple generic method to incorporate proteins into GUVs. The basic principle is to break proteo-liposomes with an osmotic shock. They subsequently reseal into larger vesicles which, if necessary, can endure the same to obtain even larger proteo-GUVs. This process does not require specific lipids or reagents, works under physiological conditions with high concentrations of protein, the proteins remains functional after incorporation. The resulting proteo-GUVs can be micromanipulated. Moreover, our protocol is valid for a wide range of protein substrates. We have successfully reconstituted three structurally different proteins, two trans-membrane proteins (TolC and the neuronal t-SNARE), and one lipid-anchored peripheral protein (GABARAP-Like 1 (GL1)). In each case, we verified that the protein remains active after incorporation and in its correctly folded state. We also measured their mobility by performing diffusion measurements via fluorescence recovery after photobleaching (FRAP) experiments on micromanipulated single GUVs. The diffusion coefficients are in agreement with previous data.


Asunto(s)
Proteínas de la Membrana/metabolismo , Presión Osmótica , Liposomas Unilamelares/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Difusión , Proteínas de la Membrana/química , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA