Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37935058

RESUMEN

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.


Asunto(s)
Bivalvos , ARN Pequeño no Traducido , Femenino , Animales , Bivalvos/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Genes Mitocondriales
2.
J Hered ; 114(5): 445-458, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37018459

RESUMEN

In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Filogenia , Genómica , Genoma , Cromosomas Sexuales/genética
3.
J Hered ; 114(5): 513-520, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36869788

RESUMEN

Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000.


Asunto(s)
Genoma , Lagartos , Humanos , Animales , Genómica/métodos , Mapeo Cromosómico/métodos , Cromosomas , Lagartos/genética
4.
J Hered ; 114(3): 199-206, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36897956

RESUMEN

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.


Asunto(s)
Bivalvos , Genoma Mitocondrial , Animales , Femenino , Masculino , Filogenia , Mitocondrias/genética , Bivalvos/genética , ADN Mitocondrial/genética , Patrón de Herencia , Recombinación Genética
5.
Mol Phylogenet Evol ; 171: 107466, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358694

RESUMEN

Comparative phylogeography explores the historical congruence of co-distributed species to understand the factors that led to their current genetic and phenotypic structures. Even species that span the same biogeographic barrier can exhibit different phylogeographic structures owing to differences in effective population sizes, genetic marker bias, and dispersal abilities. The Baja California peninsula and adjacent desert regions include several biogeographic barriers, including the Vizcaíno Desert and Sierra de la Laguna (Cape District), that have left phylogeographic patterns in some but not all species. We used genome-wide SNP data to test the hypothesis that the diverse phylogeographic patterns inferred from prior studies were supported. We found that mitochondrial DNA, single nuclear gene, and genome-wide SNP data show that the cactus wren and LeConte's thrasher have a concordant historical division at or near the Vizcaíno Desert in north-central Baja California, the Gila woodpecker is at an intermediate stage of divergence, and the California gnatcatcher lacks phylogeographic structure. None of these four species are classified taxonomically in a way that captures their evolutionary history with the exception of the LeConte's thrasher. We also analyzed mtDNA data on samples of nine other species that span the Vizcaíno Desert, with four showing no apparent division, and six additional species from the Sierra de la Laguna, all but one of which are differentiated. Reasons for contrasting phylogeographic patterns among these species should be explored further with genomic data to test the extent of concordant phylogeographic patterns. The evolutionary division at the Vizcaíno desert is well known in other vertebrate species, and our study further corroborates the extent, profound effect, and importance of this biogeographic boundary. The areas north and south of the Vizcaíno Desert, which contains considerable diversity, should be recognized as historically significant areas for conservation.


Asunto(s)
Aves , ADN Mitocondrial , Animales , Aves/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Variación Genética , México , Filogenia , Filogeografía
6.
J Hered ; 113(3): 272-287, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35363859

RESUMEN

Sex determination is a critical element of successful vertebrate development, suggesting that sex chromosome systems might be evolutionarily stable across lineages. For example, mammals and birds have maintained conserved sex chromosome systems over long evolutionary time periods. Other vertebrates, in contrast, have undergone frequent sex chromosome transitions, which is even more amazing considering we still know comparatively little across large swaths of their respective phylogenies. One reptile group in particular, the gecko lizards (infraorder Gekkota), shows an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However, detailed genomic and cytogenetic information about sex chromosomes is lacking for most gecko species, leaving large gaps in our understanding of the evolutionary processes at play. To address this, we assembled a chromosome-level genome for a gecko (Sphaerodactylidae: Sphaerodactylus) and used this assembly to search for sex chromosomes among six closely related species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to a new XY) within the genus. Interestingly, we confirmed two different linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus chromosome 3 and Gallus chromosomes 18/30/33), further highlighting a unique and fascinating trend that most linkage groups have the potential to act as sex chromosomes in squamates.


Asunto(s)
Lagartos , Animales , Evolución Molecular , Lagartos/genética , Mamíferos/genética , Filogenia , Hojas de la Planta , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo , Serpientes/genética
7.
J Hered ; 112(6): 558-564, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34043785

RESUMEN

Hymenopterans make up about 20% of all animal species, but most are poorly known and lack high-quality genomic resources. One group of important, yet understudied hymenopterans are parasitoid wasps in the family Braconidae. Among this understudied group is the genus Cotesia, a clade of ~1,000 species routinely used in studies of physiology, ecology, biological control, and genetics. However, our ability to understand these organisms has been hindered by a lack of genomic resources. We helped bridge this gap by generating a high-quality genome assembly for the parasitoid wasp, Cotesia glomerata (Braconidae; Microgastrinae). We generated this assembly using multiple sequencing technologies, including Oxford Nanopore, whole-genome shotgun sequencing, and 3D chromatin contact information (HiC). Our assembly is one of the most contiguous, complete, and publicly available hymenopteran genomes, represented by 3,355 scaffolds with a scaffold N50 of ~28 Mb and a BUSCO score of ~99%. Given the genome sizes found in closely related species, our genome assembly was ~50% larger than expected, which was apparently induced by runaway amplification of 3 types of repetitive elements: simple repeats, long terminal repeats, and long interspersed nuclear elements. This assembly is another step forward for genomics across this hyperdiverse, yet understudied order of insects. The assembled genomic data and metadata files are publicly available via Figshare (https://doi.org/10.6084/m9.figshare.13010549).


Asunto(s)
Avispas , Animales , Cromosomas , Genómica , Insectos , Avispas/genética , Secuenciación Completa del Genoma
8.
J Hered ; 111(3): 307-317, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32076711

RESUMEN

Squamate reptiles (lizards, snakes, and amphibians) are an outstanding group for studying sex chromosome evolution-they are old, speciose, geographically widespread, and exhibit myriad sex-determining modes. Yet, the vast majority of squamate species lack heteromorphic sex chromosomes. Cataloging the sex chromosome systems of species lacking easily identifiable, heteromorphic sex chromosomes, therefore, is essential before we are to fully understand the evolution of vertebrate sex chromosomes. Here, we use restriction site-associated DNA sequencing (RADseq) to classify the sex chromosome system of the granite night lizard, Xantusia henshawi. RADseq is an effective alternative to traditional cytogenetic methods for determining a species' sex chromosome system (i.e., XX/XY or ZZ/ZW), particularly in taxa with non-differentiated sex chromosomes. Although many xantusiid lineages have been karyotyped, none possess heteromorphic sex chromosomes. We identified a ZZ/ZW sex chromosome system in X. henshawi-the first such data for this family. Furthermore, we report that the X. henshawi sex chromosome contains fragments of genes found on Gallus gallus chromosomes 7, 12, and 18 (which are homologous to Anolis carolinensis chromosome 2), the first vertebrate sex chromosomes to utilize this linkage group.


Asunto(s)
Lagartos/genética , Cromosomas Sexuales , Animales , Femenino , Masculino , Mapeo Restrictivo/veterinaria , Análisis de Secuencia de ADN/veterinaria
9.
Dev Dyn ; 248(11): 1070-1090, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31219643

RESUMEN

BACKGROUND: One goal of evolutionary developmental biology is to understand the role of development in the origin of phenotypic novelty and convergent evolution. Geckos are an ideal system to study this topic, as they are species-rich and exhibit a suite of diverse morphologies-many of which have independently evolved multiple times within geckos. RESULTS: We characterized and discretized the embryonic development of Lepidodactylus lugubris-an all-female, parthenogenetic gecko species. We also used soft-tissue µCT to characterize the development of the brain and central nervous system, which is difficult to visualize using traditional microscopy techniques. Additionally, we sequenced and assembled a de novo transcriptome for a late-stage embryo as a resource for generating future developmental tools. Herein, we describe the derived and conserved patterns of L. lugubris development in the context of squamate evolution and development. CONCLUSIONS: This embryonic staging series, µCT data, and transcriptome together serve as critical enabling resources to study morphological evolution and development, the evolution and development of parthenogenesis, and other questions concerning vertebrate evolution and development in an emerging gecko model.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Lagartos/embriología , Partenogénesis/fisiología , Transcriptoma/fisiología , Animales , Femenino
10.
Dev Dyn ; 248(8): 702-708, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30839129

RESUMEN

PURPOSE: The veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo-devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. METHODS: To address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. RESULTS: We then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. CONCLUSION: We present this de novo, annotated, multi-tissue transcriptome assembly for the Veiled Chameleon, Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.


Asunto(s)
Evolución Biológica , Lagartos/genética , Transcriptoma/genética , Animales , Biología Evolutiva , Ojo/crecimiento & desarrollo , Femenino , Gónadas/crecimiento & desarrollo , Masculino , Anotación de Secuencia Molecular , Opsinas/genética , Vertebrados
11.
Cytogenet Genome Res ; 157(1-2): 89-97, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30685761

RESUMEN

Investigating the evolutionary processes influencing the origin, evolution, and turnover of vertebrate sex chromosomes requires the classification of sex chromosome systems in a great diversity of species. Among amniotes, squamates (lizards and snakes) - and gecko lizards in particular - are worthy of additional study. Geckos possess all major vertebrate sex-determining systems, as well as multiple transitions among them, yet we still lack data on the sex-determining systems for the vast majority of species. We here utilize restriction-site associated DNA sequencing (RADseq) to identify the sex chromosome system of the Puerto Rican endemic leaf-toed gecko (Phyllodactylidae: Phyllodactylus wirshingi), in order to confirm a ZZ/ZW sex chromosome system within the genus, as well as to better categorize the diversity within this poorly characterized family. RADseq has proven an effective alternative to cytogenetic methods for determining whether a species has an XX/XY or ZZ/ZW sex chromosome system - particularly in taxa with non-differentiated sex chromosomes - but can also be used to identify which chromosomes in the genome are the sex chromosomes. We here identify a ZZ/ZW sex chromosome system in P. wirshingi. Furthermore, we show that 4 of the female-specific markers contain fragments of genes found on the avian Z and discuss homology with P. wirshingi sex chromosomes.


Asunto(s)
Variación Genética , Lagartos/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Animales , ADN/química , ADN/genética , Femenino , Masculino , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
12.
Mol Phylogenet Evol ; 141: 106639, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31586687

RESUMEN

Gecko lizards are a species-rich clade of primarily-nocturnal squamate reptiles. In geckos, adaptations to nocturnality have dramatically reshaped the eye. Perhaps the most notable change is the loss of rod cells in the retina and subsequent "transmutation" of cones into a rod-like morphology and physiology. While many studies have noted the absence of some rod-specific genes, such as the visual pigment Rhodopsin (RH1), these studies have focused on just a handful of species that are nested deep in the gecko phylogeny. Thus, it is not clear whether these changes arose through convergence, are homologous and ubiquitous across geckos, or restricted to a subset of species. Here, we used de novo eye transcriptomes from five gecko species, and genomes from two additional gecko species, representing the breadth of extant gecko diversity (i.e. 4 of the 7 gecko families, spanning the deepest divergence of crown Gekkota), to show that geckos lost expression of almost the entire suite of necessary rod-cell phototransduction genes in the eye, distinct from all other squamate reptiles. Geckos are the first vertebrate group to have lost their complete rod-cell expression pathway, not just the visual pigment. In addition, all sampled species have also lost expression of the cone-opsin SWS2 visual pigment. These results strongly suggest a single loss of rod cells and subsequent cone-to-rod transmutation that occurred prior to the diversification of extant geckos.


Asunto(s)
Lagartos/genética , Transcriptoma/genética , Animales , Genoma , Fototransducción/genética , Filogenia
13.
Mol Phylogenet Evol ; 133: 54-66, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590108

RESUMEN

Amazonia harbors the greatest biological diversity on Earth. One trend that spans Amazonian taxa is that most taxonomic groups either exhibit broad geographic ranges or small restricted ranges. This is likely because many traits that determine a species range size, such as dispersal ability or body size, are autocorrelated. As such, it is rare to find groups that exhibit both large and small ranges. Once identified, however, these groups provide a powerful system for isolating specific traits that influence species distributions. One group of terrestrial vertebrates, gecko lizards, tends to exhibit small geographic ranges. Despite one exception, this applies to the Neotropical dwarf geckos of the genus Gonatodes. This exception, Gonatodes humeralis, has a geographic distribution almost 1,000,000 km2 larger than the combined ranges of its 30 congeners. As the smallest member of its genus and a gecko lizard more generally, G. humeralis is an unlikely candidate to be a wide-ranged Amazonian taxon. To test whether or not G. humeralis is one or more species, we generated molecular genetic data using restriction-site associated sequencing (RADseq) and traditional Sanger methods for samples from across its range and conducted a phylogeographic study. We conclude that G. humeralis is, in fact, a single species across its contiguous range in South America. Thus, Gonatodes is a unique clade among Neotropical taxa, containing both wide-ranged and range-restricted taxa, which provides empiricists with a powerful model system to correlate complex species traits and distributions. Additionally, we provide evidence to support species-level divergence of the allopatric population from Trinidad and we resurrect the name Gonatodes ferrugineus from synonymy for this population.


Asunto(s)
Lagartos/clasificación , Animales , Genética de Población , Lagartos/genética , Filogenia , Filogeografía , América del Sur
14.
Biol Lett ; 15(10): 20190498, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31594492

RESUMEN

Most pleurodont lizard families (anoles, iguanas and their relatives), with the exception of the basilisks and casquehead lizards (family Corytophanidae), share homologous XX/XY sex chromosomes, syntenic with chicken chromosome 15. Here, we used a suite of methods (i.e. RADseq, RNAseq and qPCR) to identify corytophanid sex chromosomes for the first time. We reveal that all examined corytophanid species have partially degenerated XX/XY sex chromosomes, syntenic with chicken chromosome 17. Transcriptomic analyses showed that the expression of X-linked genes in the corytophanid, Basiliscus vittatus, is not balanced between the sexes, which is rather exceptional under male heterogamety, and unlike the dosage-balanced sex chromosomes in other well-studied XX/XY systems, including the green anole, Anolis carolinensis. Corytophanid sex chromosomes may represent a rare example of a turnover away from stable, differentiated sex chromosomes. However, because of poor phylogenetic resolution among pleurodont families, we cannot reject the alternative hypothesis that corytophanid sex chromosomes evolved independently from an unknown ancestral system.


Asunto(s)
Iguanas , Lagartos , Animales , Evolución Molecular , Genes Ligados a X , Masculino , Filogenia , Cromosomas Sexuales
15.
J Hered ; 110(5): 523-534, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30859222

RESUMEN

Determining the mechanisms that create and maintain biodiversity is a central question in ecology and evolution. Speciation is the process that creates biodiversity. Speciation is mediated by incompatibilities that lead to reproductive isolation between divergent populations and these incompatibilities can be observed in hybrid zones. Gecko lizards are a speciose clade possessing an impressive diversity of behavioral and morphological traits. In geckos, however, our understanding of the speciation process is negligible. To address this gap, we used genetic sequence data (both mitochondrial and nuclear markers) to revisit a putative hybrid zone between Sphaerodactylus nicholsi and Sphaerodactylus townsendi in Puerto Rico, initially described in 1984. First, we addressed discrepancies in the literature on the validity of both species. Second, we sampled a 10-km-wide transect across the putative hybrid zone and tested explicit predictions about its dynamics using cline models. Third, we investigated potential causes for the hybrid zone using species distribution modeling and simulations; namely, whether unique climatic variables within the hybrid zone might elicit selection for intermediate phenotypes. We find strong support for the species-level status of each species and no evidence of movement, or unique climatic variables near the hybrid zone. We suggest that this narrow hybrid zone is geographically stable and is maintained by a combination of dispersal and selection. Thus, this work has identified an extant model system within geckos that that can be used for future investigations detailing genetic mechanisms of reproductive isolation in an understudied vertebrate group.


Asunto(s)
Biodiversidad , Genética de Población , Hibridación Genética , Lagartos/genética , Aislamiento Reproductivo , Animales , ADN Mitocondrial/genética , Especiación Genética , Geografía , Modelos Genéticos , Fenotipo , Filogenia , Puerto Rico
16.
J Hered ; 109(4): 462-468, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29294045

RESUMEN

Sex-specific genetic markers identified using restriction site-associated DNA sequencing, or RADseq, permits the recognition of a species' sex chromosome system in cases where standard cytogenetic methods fail. Thus, species with male-specific RAD markers have an XX/XY sex chromosome system (male heterogamety) while species with female-specific RAD markers have a ZZ/ZW sex chromosome (female heterogamety). Here, we use RADseq data from 5 male and 5 female South American dwarf geckos (Gonatodes humeralis) to identify an XX/XY sex chromosome system. This is the first confidently known sex chromosome system in a Gonatodes species. We used a low-coverage de novo G. humeralis genome assembly to design PCR primers to validate the male-specificity of a subset of the sex-specific RADseq markers and describe how even modest genome assemblies can facilitate the design of sex-specific PCR primers in species with diverse sex chromosome systems.


Asunto(s)
Genoma/genética , Lagartos/genética , Cromosomas Sexuales/genética , Animales , Femenino , Marcadores Genéticos/genética , Genómica , Masculino , Factores Sexuales
17.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39031594

RESUMEN

Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniote vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; including ∼11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes. Despite this high TE activity, squamate genomes are remarkably uniform in size. We hypothesize that novel, lineage-specific genome dynamics have evolved over the course of squamate evolution. To understand the interplay between TEs and host genomes, we analyzed the evolutionary history of the chicken repeat 1 (CR1) retrotransposon, a TE family found in most tetrapod genomes which is the dominant TE in most reptiles. We compared 113 squamate genomes to the genomes of turtles, crocodilians, and birds and used ancestral state reconstruction to identify shifts in the rate of CR1 copy number evolution across reptiles. We analyzed the repeat landscapes of CR1 in squamate genomes and determined that shifts in the rate of CR1 copy number evolution are associated with lineage-specific variation in CR1 activity. We then used phylogenetic reconstruction of CR1 subfamilies across amniotes to reveal both recent and ancient CR1 subclades across the squamate tree of life. The patterns of CR1 evolution in squamates contrast other amniotes, suggesting key differences in how TEs interact with different host genomes and at different points across evolutionary history.


Asunto(s)
Evolución Molecular , Genoma , Reptiles , Retroelementos , Animales , Reptiles/genética , Reptiles/clasificación , Filogenia , Lagartos/genética , Pollos/genética
18.
Genome Biol Evol ; 16(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38319079

RESUMEN

Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z chromosome scaffolds. These putative Z chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.


Asunto(s)
Animales Ponzoñosos , Heloderma suspectum , Lagartos , Animales , Masculino , Femenino , Lagartos/genética , Cromosomas Sexuales/genética , Cariotipo , Compensación de Dosificación (Genética)
19.
Evolution ; 78(2): 355-363, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952174

RESUMEN

Although sex determination is ubiquitous in vertebrates, mechanisms of sex determination vary from environmentally to genetically influenced. In vertebrates, genetic sex determination is typically accomplished with sex chromosomes. Groups like mammals maintain conserved sex chromosome systems, while sex chromosomes in most vertebrate clades are not conserved across similar evolutionary timescales. One group inferred to have an evolutionarily stable mode of sex determination is Anguimorpha, a clade of charismatic taxa including monitor lizards, Gila monsters, and crocodile lizards. The common ancestor of extant anguimorphs possessed a ZW system that has been retained across the clade. However, the sex chromosome system in the endangered, monotypic family of crocodile lizards (Shinisauridae) has remained elusive. Here, we analyze genomic data to demonstrate that Shinisaurus has replaced the ancestral anguimorph ZW system on LG7 with a novel ZW system on LG3. The linkage group, LG3, corresponds to chromosome 9 in chicken, and this is the first documented use of this syntenic block as a sex chromosome in amniotes. Additionally, this ~1 Mb region harbors approximately 10 genes, including a duplication of the sex-determining transcription factor, Foxl2, critical for the determination and maintenance of sexual differentiation in vertebrates, and thus a putative primary sex-determining gene for Shinisaurus.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Cromosomas Sexuales , Serpientes/genética , Genoma , Genómica , Procesos de Determinación del Sexo , Mamíferos/genética
20.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034614

RESUMEN

In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012-2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA