Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Biol Rep ; 51(1): 528, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637345

RESUMEN

BACKGROUND: Catfishes (order Siluriformes) are among the most diverse and widely distributed fish groups in the world. They are not only used for human consumption but are also a major part of the ornamental fish trade. Being a Biodiversity Hotspot, the North Eastern Region of India is home to a diverse population of ornamental fishes. Catfishes contain a humongous number of species; in this study, the authors have tried to elucidate the phylogenetic relationship of some important ornamental catfishes found in North East India using DNA barcodes. METHODS AND RESULTS: In this study, we have tried to explore the phylogenetic history of 13 species (41 specimens) of ornamental catfishes spanning 12 genera and 9 families of Siluriformes using DNA barcoding. Pairwise genetic distances using Kimura 2-Parameter (K2P) were calculated at intra-specific and inter-specific levels. A Neighbor-Joining tree was constructed to understand the phylogenetic relationship among the nine different catfish families. All the specimens under this study clustered with their respective species under the same family and formed three sub-clades. However, Olyra longicaudata, belonging to the Bagridae family, did not cluster with other species from the same family. In this study, the authors have suggested a revision of the classification of O. longicaudata back to its original family, Olyridae. CONCLUSIONS: In this study, the maximum intraspecific genetic distance of 0.03 and the minimum interspecific genetic distance of 0.14 were observed among the species. Therefore, it is evident that there is a barcoding gap among the species, which helped in the correct identification of the species. Thus, DNA barcoding helped complement the phenetic approach and also revealed a different phylogenetic relationship among the catfishes belonging to the Bagridae family.


Asunto(s)
Bagres , Animales , Humanos , Bagres/genética , Código de Barras del ADN Taxonómico/métodos , Filogenia , ADN , India
2.
Mol Biol Rep ; 50(7): 5635-5646, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37179501

RESUMEN

BACKGROUND: Labeo rohita represents the most dominant fish species in Indian aquaculture and the fish cell lines have been used as an excellent in vitro platform for performing various biological research. METHODS AND RESULTS: The LRM cell culture developed from the muscle tissue of L. rohita was used to study the in vitro applications. The developed muscle cells were maintained in a Leibovitz's-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF at 28 oC temperature. The LRM cells showed fibroblastic-like morphology and was authenticated by sequencing mitochondrial gene 16S rRNA. The expression of myogenic regulatory factors (MRFs) was studied in different stages of LRM cells; however, the expression patterns varied at different passages. The MEF2A, Mrf-4, and Myogenin expressions were higher in passage 25, while the expression of MyoD was maximum in passage 15, and the expression of Myf-5 was highest in passage 1. The transfection efficiency of LRM cells revealed 14 % of the GFP expression with a pmaxGFP vector DNA. The LRM cells were susceptible to the extracellular products prepared from Aeromonas hydrophilla and Edwardsiella tarda. The acute cytotoxicity of six heavy metals (Hg, Cd, Zn, Cu, Pb, Ni) was assessed in LRM cells by a dose-dependent manner in comparison to IC50 values obtained from MTT and NR assays. A revival rate of 70-75% was achieved when the LRM cells were cryopreserved at - 196 °C using liquid nitrogen. CONCLUSION: The developed muscle cells serve as an functional in vitro tool for toxicological and biotechnological studies.


Asunto(s)
Cyprinidae , Animales , ARN Ribosómico 16S/genética , Línea Celular , Cyprinidae/genética , Músculos , Células Musculares
3.
Mol Biol Rep ; 50(1): 19-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36289143

RESUMEN

BACKGROUND: The available fully sequenced genome and genetic similarities compared to humans make zebrafish a prominent in vitro vertebrate model for drug discovery & screening, toxicology, and radiation biology. Zebrafish also possess well developed immune systems which is ideal for studying infectious diseases. Fish skin confers immunity by serving as a physical barrier against the invading pathogens in the aquatic habitat. Therefore in vitro models from the skin tissue of zebrafish help to study the physiology, functional genes in vitro, wound healing, and pathogenicity of microbes. Hence the study aimed to develop and characterize a skin cell line from the wild-type zebrafish Danio rerio. METHODS AND RESULTS: A novel cell line designated as DRS (D. rerio skin) was established and characterized from the skin tissue of wild-type zebrafish, D. rerio, by the explant technique. The cells thrived well in the Leibovitz's -15 medium supplemented with 15% FBS and routinely passaged at regular intervals. The DRS cells mainly feature fibroblast-like morphology. The culture conditions of the cells were determined by incubating the cells at varying concentrations of FBS and temperature; the optimum was 15% FBS and 28 °C, respectively. Cells were cryopreserved and revived with 70-75% viability at different passage levels. Two extracellular products from bacterial species Aeromonas hydrophila and Edwardsiella tarda were tested and found toxic to the DRS cells. Mitochondrial genes, namely COI and 16S rRNA PCR amplification and partial sequencing authenticated the species of origin of cells. The modal diploid (2n) chromosome number of the cells was 50. The cell line DRS was found to be free from mycoplasma. The cells were transfected with pMaxGFP plasmid and tested positive for green fluorescence at 24-48 h post-transfection. CONCLUSION: The findings from this study thus confirm the usefulness of the developed cell line in bacterial susceptibility and transgene expression studies.


Asunto(s)
Piel , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Línea Celular , Aeromonas hydrophila
4.
Fish Physiol Biochem ; 49(6): 1295-1302, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37878191

RESUMEN

The cell line has been used as a novel in vitro tool for executing several studies in life sciences. The current study aimed to develop and characterize a muscle cell culture system derived from Clarias magur. The primary muscle cell cultures derived from the caudal peduncle muscle have been successfully sub cultured up to 13 passages to establish a new muscle cell culture system known as CMM. At a temperature of 28 °C, L-15 medium supplemented with 20% FBS produced the maximum growth of muscle cells. However, muscle cells were optimized to grow at 10% FBS. To enhance the proliferation capacity of the CMM cells, a growth-promoting factor bFGF (10 ng/ml) was added, thereby reducing the time interval of passages for the subsequent cultures. DNA barcoding of the CMM cell culture system authenticated the species of origin. The cell culture system was successfully cryopreserved by a slow freezing procedure at - 80 °C with a revival efficiency of 60%.


Asunto(s)
Bagres , Animales , Bagres/metabolismo , Músculos , Línea Celular , Criopreservación/veterinaria , Técnicas de Cultivo de Célula
5.
J Proteome Res ; 21(2): 420-437, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34962809

RESUMEN

Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.


Asunto(s)
Cyprinidae , Proteoma , Animales , Cyprinidae/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica , Agua/metabolismo
6.
Molecules ; 23(5)2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29747390

RESUMEN

Mucosal surfaces are of key importance in protecting animals against external threats including pathogens. In the mucosal surfaces, host molecules interact with non-self to prevent infection and disease. Interestingly, both inhibition and stimulation of uptake hinder infection. In this review, the current knowledgebase on teleost mucosal lectins' ability to interact with non-self is summarised with a focus on agglutination, growth inhibition, opsonisation, cell adhesion, and direct killing activities. Further research on lectins is essential, both to understand the immune system of fishes, since they rely more on the innate immune system than mammals, and also to explore these molecules' antibiotic and antiparasitic activities against veterinary and human pathogens.


Asunto(s)
Peces/metabolismo , Lectinas/metabolismo , Membrana Mucosa/metabolismo , Animales , Biopelículas , Quimiotaxis , Hemaglutinación , Humanos
7.
mSystems ; 9(10): e0024724, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39292008

RESUMEN

In the aquaculture sector, one of the challenges includes disease outbreaks such as bacterial infections, particularly from Aeromonas hydrophila (Ah), impacting both wild and farmed fish. In this study, we conducted a proteomic analysis of the intestinal tissue in Labeo rohita following Ah infection to elucidate the protein alterations and its implications for immune response. Our findings indicate significant dysregulation in extracellular matrix (ECM)-associated proteins during Ah infection, with increased abundance of elastin and collagen alpha-3(VI). Pathway and enrichment analysis of differentially expressed proteins highlights the involvement of ECM-related pathways, including focal adhesions, integrin cell surface interactions, and actin cytoskeleton organization. Focal adhesions, crucial for connecting intracellular actin bundles to the ECM, play a pivotal role in immune response during infections. Increased abundance of integrin alpha 1, integrin beta 1, and tetraspanin suggests their involvement in the host's response to Ah infection. Proteins associated with actin cytoskeleton reorganization, such as myosin, tropomyosin, and phosphoglucomutase, exhibit increased abundance, influencing changes in cell behavior. Additionally, upregulated proteins like LTBP1 and fibrillin-2 contribute to TGF-ß signaling and focal adhesion, indicating their potential role in immune regulation. The study also identifies elevated levels of laminin, galectin 3, and tenascin-C, which interact with integrins and other ECM components, potentially influencing immune cell migration and function. These proteins, along with decorin and lumican, may act as immunomodulators, coordinating pro- and anti-inflammatory responses. ECM fragments released during pathogen invasion could serve as "danger signals," initiating pathogen clearance and tissue repair through Toll-like receptor signaling. IMPORTANCE: The study underscores the critical role of the extracellular matrix (ECM) and its associated proteins in the immune response of aquatic organisms during bacterial infections like Aeromonas hydrophila. Understanding the intricate interplay between ECM alterations and immune response pathways provides crucial insights for developing effective disease control strategies in aquaculture. By identifying key proteins and pathways involved in host defense mechanisms, this research lays the groundwork for targeted interventions to mitigate the impact of bacterial infections on fish health and aquaculture production.


Asunto(s)
Aeromonas hydrophila , Matriz Extracelular , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Proteómica , Animales , Aeromonas hydrophila/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/metabolismo , Matriz Extracelular/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/metabolismo , Proteómica/métodos , Cyprinidae/inmunología , Cyprinidae/metabolismo , Cyprinidae/microbiología , Intestinos/inmunología , Intestinos/microbiología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Proteoma/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38430708

RESUMEN

Edwardsiella tarda (Et) is a zoonotic gram-negative pathogen with a diverse host range, including fish. However, the in-depth molecular mechanisms underlying the response of Labeo rohita (rohu) kidney to Et are poorly understood. A proteomic and histopathological analysis was performed for the rohu kidney after Et infection. The histopathology of the infected rohu kidney showed vacuolation and necrosis. After LC-MS/MS analysis, ~1240 proteins were identified with ≥2 unique peptides. A total of 96 differentially abundant proteins (DAPs) were observed between the control and Et infected group (ET). Metascape and STRING analysis were used for the gene ontology (GO), and protein-protein interaction network (PPI) for the significant pathways of DAPs. In PPI, low-abundant proteins were mapped to metabolic pathways and oxidative phosphorylation (cox5ab, uqcrfs1). High-abundance proteins were mapped to ribosomes (rplp2), protein process in the ER (hspa8), and immune system (ptgdsb.1, muc2). Our label-free proteomic approach in the rohu kidney revealed abundant enriched proteins involved in vesicle coat (ehd4), complement activation (c3a.1, c9, c7a), phagosome (thbs4, mapk1), metabolic reprogramming (hao1, glud1a), wound healing (vim, alox5), and the immune system (psap) after Et infection. A targeted proteomics approach of multiple reaction monitoring (MRM) validated the DAPs (nprl3, ambp, vmo1a, hspg2, muc2, hao1 and glud1a) between control and ET. Overall, the current analysis of histology and proteome in the rohu kidney provides comprehensive data on pathogenicity and the potential immune proteins against Et.


Asunto(s)
Edwardsiella tarda , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Proteínas de Peces , Riñón , Proteómica , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Riñón/microbiología , Riñón/metabolismo , Proteínas de Peces/metabolismo , Cyprinidae/metabolismo , Cyprinidae/microbiología , Proteoma/análisis , Mapas de Interacción de Proteínas , Espectrometría de Masas en Tándem
9.
Cytotechnology ; 75(4): 349-361, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37389130

RESUMEN

Labeo rohita is a widely cultivated tropical freshwater carp and found in rivers of South Asian region. A new cell line, designated LRM, has been developed from the muscle tissue of L. rohita. Muscle cells were subcultured up to 38 passages in a Leibovitz's-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF. The LRM cells exhibited fibroblastic morphology with a doubling time of 28 h, and a plating efficiency of 17%. A maximum growth rate was observed for LRM cells at 28 °C, 10% FBS and 10 ng/ml bFGF. A cytochrome C oxidase subunit I (COI) gene sequence was used to authenticate the developed cell line. Chromosome analysis revealed 50 diploid chromosomes. The fibroblastic characteristics of the of the LRM cells was confirmed by immunocytochemistry. The expression of MyoD gene in LRM cells was analyzed by quantitative PCR in comparison with passages 3, 18 and 32. The expression of MyoD was higher at passage 18 compared to the passages 3 and 32. The LRM cells attached properly onto the 2D scaffold and the expression of the F-actin filament protein was confirmed by phalloidin staining followed by counter staining with DAPI to observe the distribution of the muscle cell nuclei and the cytoskeleton protein. A revival rate of 70-80% was achieved when the LRM cells were cryopreserved at - 196 °C using liquid nitrogen. This study would further contribute to understanding the in vitro myogenesis and progress toward cultivated fish meat production.

10.
J Proteomics ; 279: 104870, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906258

RESUMEN

Aeromonas hydrophila (Ah) is a Gram-negative bacterium and a serious global pathogen causing Motile Aeromonas Septicaemia (MAS) in fish leading to global loss in aquaculture. Investigation of the molecular alterations of host tissues such as liver could be a powerful approach to identify mechanistic and diagnostic immune signatures of disease pathogenesis. We performed a proteomic analysis of Labeo rohita liver tissue to examine the protein dynamics in the host cells during Ah infection. The proteomic data was acquired using two strategies; discovery and targeted proteomics. Label-free quantification was performed between Control and challenged group (AH) to identify the differentially expressed proteins (DEPs). A total of 2525 proteins were identified and 157 were DEPs. DEPs include metabolic enzymes (CS, SUCLG2), antioxidative proteins, cytoskeletal proteins and immune related proteins (TLR3, CLEC4E). Pathways like lysosome pathway, apoptosis, metabolism of xenobiotics by cytochrome P450 were enriched by downregulated proteins. However, upregulated proteins majorly mapped to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing in ER. Our study would help in exploring the role of Toll-like receptors, C-type lectins and, metabolic intermediates like citrate and succinate in Ah pathogenesis to understand the Ah infection in fish. SIGNIFICANCE: Bacterial diseases such as motile aeromonas septicaemia (MAS) are among the most serious problems in aquaculture industry. Small molecules that target the metabolism of the host have recently emerged as potential treatment possibilities in infectious diseases. However, the ability to develop new therapies is hampered due to lack of knowledge about pathogenesis mechanisms and host-pathogen interactions. We examined alterations in the host proteome during MAS caused by Aeromonas hydrophila (Ah) infection, in Labeo rohita liver tissue to find cellular proteins and processes affected by Ah infection. Upregulated proteins belong to innate immune system, signaling of B cell receptor, proteosome pathway, ribosome, carbon metabolism and protein processing. Our work is an important step towards leveraging host metabolism in targeting the disease by providing a bigger picture on proteome pathology correlation during Ah infection.


Asunto(s)
Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/metabolismo , Proteoma/metabolismo , Proteómica , Cyprinidae/metabolismo , Hígado/metabolismo , Redes y Vías Metabólicas , Receptores de Antígenos de Linfocitos B/metabolismo , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/metabolismo , Enfermedades de los Peces/microbiología
11.
OMICS ; 26(9): 489-503, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36036978

RESUMEN

Introduction: The liver is highly sensitive to the environmental factors. Liver tissue, particularly from fish, is often used as a biological target in ecological monitoring, disease research, and stress response studies. Labeo rohita (rohu) is a fish with a significant role in the global aquaculture economy. Methods: Bottom-up proteomics relies on efficient sample preparation for performing mass spectrometric analysis of the liver tissue. Optimization of protein solubilization and digestion strategies is the key step to obtain reliable data for a successful proteomics experiment. Because the goal of extraction is to acquire the optimum protein quality and yield, the first step should be to choose an appropriate extraction method based on the type of sample. Solubilization buffers containing sodium dodecyl sulfate (SDS) or urea, and digestion methods such as filter-aided sample preparation (FASP), suspension trap (S-Trap) and in-solution are often used in proteomics but are in need of comparative evaluation with an eye to protocol optimization. Experiment: We applied two different solubilization buffers (one containing SDS, and other containing urea) and three digestion methods (FASP, S-Trap, and in-solution) to the proteomic analysis of the fish (L. rohita) liver tissue. Label-free quantification analysis was performed to analyze the similarities and differences in the results with each method. Gene ontology-based functional analysis was performed for the identified proteome across the experimental conditions to overview their protein classes, molecular functions, and biological processes. Results: SDS lysis followed by S-Trap digestion outperformed the other combinations of lysis and digestion in terms of higher protein coverage, consistency in the results and repeatability. Filter-based methods provided comparatively better results than in-solution digestion. Discussion: This protocol presents new insights on ways to optimize discovery and targeted proteomic analyses of liver tissue using the fish L. rohita as a case study. Other tissues can also be evaluated in the future drawing from the results in this study. This would help the scientific community with hypothesis-driven studies on topics ranging from basic biology to applied aquaculture research and ecological monitoring. This is particularly relevant in the current era of ecological crises and environmental pollution, where advances and optimization in research protocols can contribute to in-depth studies of ecosystems and planetary health.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Animales , Ecosistema , Monitoreo del Ambiente , Hígado , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Urea , Flujo de Trabajo
12.
Micromachines (Basel) ; 13(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35744442

RESUMEN

Aquaculture plays an important role as one of the fastest-growing food-producing sectors in global food and nutritional security. Demand for animal protein in the form of fish has been increasing tremendously. Aquaculture faces many challenges to produce quality fish for the burgeoning world population. Cellular aquaculture can provide an alternative, climate-resilient food production system to produce quality fish. Potential applications of fish muscle cell lines in cellular aquaculture have raised the importance of developing and characterizing these cell lines. In vitro models, such as the mouse C2C12 cell line, have been extremely useful for expanding knowledge about molecular mechanisms of muscle growth and differentiation in mammals. Such studies are in an infancy stage in teleost due to the unavailability of equivalent permanent muscle cell lines, except a few fish muscle cell lines that have not yet been used for cellular aquaculture. The Prospect of cell-based aquaculture relies on the development of appropriate muscle cells, optimization of cell conditions, and mass production of cells in bioreactors. Hence, it is required to develop and characterize fish muscle cell lines along with their cryopreservation in cell line repositories and production of ideal mass cells in suitably designed bioreactors to overcome current cellular aquaculture challenges.

13.
Sci Data ; 9(1): 171, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418183

RESUMEN

Labeo rohita (Rohu) is one of the most important fish species produced in world aquaculture. Integrative omics research provides a strong platform to understand the basic biology and translate this knowledge into sustainable solutions in tackling disease outbreak, increasing productivity and ensuring food security. Mass spectrometry-based proteomics has provided insights to understand the biology in a new direction. Very little proteomics work has been done on 'Rohu' limiting such resources for the aquaculture community. Here, we utilised an extensive mass spectrometry based proteomic profiling data of 17 histologically normal tissues, plasma and embryo of Rohu to develop an open source PeptideAtlas. The current build of "Rohu PeptideAtlas" has mass-spectrometric evidence for 6015 high confidence canonical proteins at 1% false discovery rate, 2.9 million PSMs and ~150 thousand peptides. This is the first open-source proteomics repository for an aquaculture species. The 'Rohu PeptideAtlas' would promote basic and applied aquaculture research to address the most critical challenge of ensuring nutritional security for a growing population.


Asunto(s)
Cyprinidae , Proteómica , Animales , Acuicultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA