RESUMEN
An implementation proposal that seeks to globalize the scope of the sustainable technologies developed in the University laboratories is presented. This approach uses the generation of triple-impact projects placing people at the center of technological development to bring technical and scientific knowledge into a service design oriented to global sustainable solutions. This research is an approach to what a hub for scientific research, technological implementation, and human needs would look like by designing common environments in which to interact and expand knowledge in an iterated way through the experience of all the actors involved in technological implementation. As a control case, a new technology developed at the Universidad de Buenos Aires, consisting of using sustainable materials as tubular reactor fillers for water treatment was chosen. Based on data obtained within the framework of a University extension project, in which the water quality diagnosis for human consumption was carried out and cross-examined with the mathematical analysis of sorption, design parameters of the reactor, participatory design, and open source concepts application, different virtual environments were generated with distinct objectives: i) open design environment: publishing and mapping of installed sorption reactors, reactor model plans, and useful information related to drinking water quality (aimed at contributors of the open source design environment); ii) platform for academic actors linking: connecting data between prototyping lab for participatory design of sorption reactors (aimed at university research users); iii) information disclosure page: space where the implemented technology impact is displayed and shows options to contact researchers and request a reactor design diagnosis for another community (aimed at beneficiary users). A technological service designed to link the University with the community was proposed, by resolving one of the main gaps related to the possibility for communities to access public financing for self-managed improvement projects, increasing the appropriation of the adopted technology and democratizing public investment, making it sustainable over time.
Asunto(s)
Calidad del AguaRESUMEN
Paraquat is still a widely used herbicide in several countries. Its toxic action on plants occurs through a one-electron reduction interfering with the photosynthesis process. By a similar reaction, the herbicide may induce peroxidation processes in non-target animal species. Furthermore, paraquat may interfere with the cellular transport of polyamines. The aim of this work was to investigate some aspects related to paraquat-induction of oxidative stress (lipoperoxidation, enzymatic activities of catalase and superoxide dismutase) and also the levels of polyamines (putrescine, spermidine and spermine) in two species of freshwater invertebrates, the oligochaete Lumbriculus variegatus and the gastropod Biomphalaria glabrata. The results showed that both organisms elicited differential responses. In addition, the data suggested that polyamines may play an important role against lipoperoxidation processes.