Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Clin Microbiol Infect Dis ; 37(12): 2301-2306, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30238343

RESUMEN

Yersiniosis is a foodborne infection caused by Yersinia enterocolitica or Yersinia pseudotuberculosis. Although yersiniosis is most often self-limiting, some patients develop chronic infections, such as reactive arthritis, glomerulonephritis, or myocarditis, which require an antibiotic treatment. Whereas early infections can be diagnosed by direct detection of bacteria, chronic infections can only be identified by serological tests. At this point, a serological method for differentiation between infections with the two Yersinia species is important since antibiotic susceptibility of these bacteria is different. Traditional immunoassays do not distinguish between infections with Y. enterocolitica and Y. pseudotuberculosis. The only test that allows for this differentiation is Mikrogen's strip test where discrimination between the two types of infection is based on two recombinant bacterial proteins, MyfA and PsaA (specific for Y. enterocolitica and Y. pseudotuberculosis, respectively). Here, we show that Y. enterocolitica and Y. pseudotuberculosis, cultured under the conditions that mimic the natural rout of infection, express surface antigens different from MyfA and PsaA that can also be used in a discrimination test. Further, we describe a new ELISA that is based on the whole bacteria and recombinant MyfA and PsaA as antigens, and that allows the differentiation between infections with Y. enterocolitica and Y. pseudotuberculosis and simultaneous detection of yersiniosis.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Yersiniosis/diagnóstico , Yersinia enterocolitica/aislamiento & purificación , Infecciones por Yersinia pseudotuberculosis/diagnóstico , Yersinia pseudotuberculosis/aislamiento & purificación , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Enfermedad Crónica , Diagnóstico Diferencial , Escherichia coli , Humanos , Proteínas Recombinantes/inmunología , Yersiniosis/sangre , Infecciones por Yersinia pseudotuberculosis/sangre
2.
Materials (Basel) ; 17(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39063684

RESUMEN

In an experimental study of two-branched beams bent transversely about the major stiffness axis, the elastic critical load from the lateral-torsional buckling condition was determined. The tests were conducted on simply supported two-branch beam models with a built-up section consisting of two cold-formed channel members (2C) bolted back-to-back. The bolts were located at the mid-height of the built-up cross-section. Five groups of members differing in longitudinal bolt spacing were examined. The models were gravitationally loaded (using ballast) at the centre of the beam span. This approach eliminated the undesirable effect of the lateral support of the beam, e.g., by the actuator head. The critical load, measured by the concentrated transverse force (Pz,cr), was determined using the modified Southwell method. It has been experimentally shown that, in built-up beams, there is an influence of bolt spacing on the elastic critical load from the lateral-torsional buckling condition. The lowest critical load capacity and the most non-linear behaviour of the built-up member were observed in beams bolted with only three bolts (at the supports and in the middle of the span). However, the experimental results obtained in this study show that increasing the number of bolts above a certain level (in the case of the tested models, it was seven bolts) does not result in a further increase in the critical load, which is a surprising result. The obtained values were 15 to 23% lower than the critical load determined numerically by the finite element method (LTBeamN) for an analogous element with a uniform I-section.

3.
Materials (Basel) ; 16(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36836976

RESUMEN

Transversely loaded beam grillages are quite often used in industrial construction. In order to produce a safe design of such structures, it is necessary to account for the lateral torsional buckling phenomenon, which reduces load-bearing capacity. To be able to calculate the relevant reduction factor, the elastic critical load must be determined. As regards the existing design practice for such structures, simplified conditions are assumed for the mutual restraint of the component beams. However, this approach does not correspond to reality. This study discusses the results of numerical investigations and analytical calculations concerning the effect of the elastic action of simple beam grillage (SBG) joints on the critical load, which results from the lateral torsional buckling (LTB) condition. The SBG was defined as a flat system of interconnected beams, unstiffened laterally and loaded perpendicularly to the grillage plane. The analysis covered H-shaped grillages with different span ratios of component beams, in which the main (coupling) beam was decisive for instability. The effectiveness of the use of closed-section stiffeners at the grillage joints was also investigated. The grillage elastic critical resistances (ECR) were determined for two variants of joint stiffening. The computations were performed by means of FEM numerical simulations. The spatial models were discretised with the following elements: (1) solid ones in Abaqus, (2) shell ones in ConSteel, and (3) thin-walled bars in ConSteel. The LTB critical moments of the weakest beam (critical beam), elastically restrained against warping and against lateral rotation (in the LTB plane), were computed using the analytical methods developed by the authors. To this end, the methods were proposed to determine the indexes of the critical beam elastic restraint in the adjacent stiffening beams. In the study, it was demonstrated that (1) taking into account the conditions of mutual elastic restraint and interaction of the component beams provides a more accurate assessment of the grillage ECR, (2) the use of closed-section stiffeners in the grillage joints increase the ECR compared with classic flat stiffeners, (3) the grillage ECR can be estimated based on the critical moment Mcr of the weakest beam (critical beam) when the conditions of its elastic restraint in joints are accounted for.

4.
Materials (Basel) ; 15(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207818

RESUMEN

This paper reports the results of the next stage of the authors' investigations into the effect of the elastic action of support nodes on the lateral torsional buckling of steel beams with a bisymmetric I-section. The analysis took into account beam elastic restraint against warping and against rotation in the bending plane. Such beams are found in building frames or frame structures. Taking into account the support conditions mentioned above allows for more effective design of such elements, compared with the boundary conditions of fork support, commonly adopted by designers. The entire range of variation in node rigidity was considered in the study, namely from complete freedom of warping to complete restraint, and from complete freedom of rotation relative to the stronger axis of the cross section (free support) to complete blockage (full fixity). The beams were conservatively assumed to be freely supported against lateral rotation, i.e., rotation in the lateral torsional buckling plane. Calculations were performed for various values of the indexes of fixity against warping and against rotation in the beam bending plane. In the study, formulas for the critical moment of bilaterally fixed beams were developed. Also, approximate formulas were devised for elastic restraint in the support nodes. The formulas concerned the most frequent loading variants applied to single-span beams. The critical moments determined in the study were compared, with values obtained using LTBeamN software (FEM). Good compliance of results was observed. The derived formulas are useful for the engineering design of this type of structures. The designs are based on a more accurate calculation model, which, at the same time offers simplicity of calculation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA