RESUMEN
The world's urban population is growing rapidly, and threatening natural ecosystems, especially streams. Urbanization leads to stream alterations, increased peak flow frequencies, and reduced water quality due to pollutants, morphological changes, and biodiversity loss, known as the urban stream syndrome. However, a shift towards recognizing urban streams as valuable natural systems is occurring, emphasizing green infrastructure and nature-based solutions. This study in Uruguay examined water quality in various watersheds with different urbanization levels and socio-environmental characteristics along a precipitation gradient. Using Geographic Information Systems (GIS) and in situ data, we assessed physicochemical parameters, generated territorial variables, and identified key predictors of water quality. We found that urbanization, particularly urban areas, paved areas, and populations without sanitation, significantly influenced water quality parameters. These factors explained over 50% of the variation in water quality indicators. However, the relationship between urbanization and water quality was non-linear, with abrupt declines after specific urban intensity thresholds. Our results illustrate that ensuring sanitation networks and managing green areas effectively are essential for preserving urban stream water quality. This research underscores the importance of interdisciplinary teams and localized data for informed freshwater resource management.
Asunto(s)
Ríos , Urbanización , Uruguay , Ecosistema , Saneamiento , Calidad del Agua , Monitoreo del AmbienteRESUMEN
The original version of this article unfortunately contained an error in the published paper.
RESUMEN
Poor water quality in urban streams places at risk the health of urban residents and the integrity of urban environments, ultimately leading to the "urban stream syndrome." In response to growing concerns regarding urban streams in Uruguay, we evaluated the spatiotemporal variation in water quality parameters in two urban streams, the Ceibal and La Curtiembre streams, over 12-18 months. A proposal for an Urban Water Quality Index (UWQI) was developed based on national water quality standards for two stream classes to assess variability in overall stream condition over time. Both streams displayed extremely high levels of fecal coliform concentrations in mid-downstream sites and relatively high levels of total dissolved phosphorus and ammonia well above the national standards of 0.025 mg/L and 0.02 mg/L, respectively. Nitrate was consistently below the national maximum of 44.3 mg/L, calling to question the adequacy of this standard for designated uses. Over 40% of samples had oxygen levels below the national standard of 5 mg/L, and a dead zone (average 1.5 mg/L) was detected in the downstream reach of the La Curtiembre stream. Despite differences in land use and urban context, monthly observations of nutrients and coliforms indicated high levels of contamination in mid-downstream reaches, which could present a health risk for the populations in Paysandú and Salto. This study highlights the degradation of urban streams in two major cities in Uruguay and the need for a comparative diagnosis of stream condition as a basis for decision-making regarding urban development and water resources.