Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Gastroenterology ; 162(1): 166-178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606847

RESUMEN

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an emerging treatment modality for ulcerative colitis (UC). Several randomized controlled trials have shown efficacy for FMT in the treatment of UC, but a better understanding of the transferable microbiota and their immune impact is needed to develop more efficient microbiome-based therapies for UC. METHODS: Metagenomic analysis and strain tracking was performed on 60 donor and recipient samples receiving FMT for active UC. Sorting and sequencing of immunoglobulin (Ig) A-coated microbiota (called IgA-seq) was used to define immune-reactive microbiota. Colonization of germ-free or genetically engineered mice with patient-derived strains was performed to determine the mechanism of microbial impact on intestinal immunity. RESULTS: Metagenomic analysis defined a core set of donor-derived transferable bacterial strains in UC subjects achieving clinical response, which predicted response in an independent trial of FMT for UC. IgA-seq of FMT recipient samples and gnotobiotic mice colonized with donor microbiota identified Odoribacter splanchnicus as a transferable strain shaping mucosal immunity, which correlated with clinical response and the induction of mucosal regulatory T cells. Colonization of mice with O splanchnicus led to an increase in Foxp3+/RORγt+ regulatory T cells, induction of interleukin (IL) 10, and production of short chain fatty acids, all of which were required for O splanchnicus to limit colitis in mouse models. CONCLUSIONS: This work provides the first evidence of transferable, donor-derived strains that correlate with clinical response to FMT in UC and reveals O splanchnicus as a key component promoting both metabolic and immune cell protection from colitis. These mechanistic features will help enable strategies to enhance the efficacy of microbial therapy for UC. Clinicaltrials.gov ID NCT02516384.


Asunto(s)
Bacteroidetes/inmunología , Colitis/terapia , Colon/microbiología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Inmunoglobulina A/inmunología , Mucosa Intestinal/microbiología , Animales , Bacteroidetes/genética , Bacteroidetes/metabolismo , Ensayos Clínicos como Asunto , Colitis/inmunología , Colitis/metabolismo , Colitis/microbiología , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colon/inmunología , Colon/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes , Humanos , Inmunidad Mucosa , Inmunoglobulina A/genética , Inmunoglobulina A/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Linfocitos Intraepiteliales/microbiología , Metagenoma , Metagenómica , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/microbiología , Resultado del Tratamiento
2.
Mol Plant Microbe Interact ; 33(9): 1116-1128, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32484383

RESUMEN

Pectin, as part of the fruit cell wall, can be degraded by brown rot fungi by coordinating the production, secretion, and action of extracellular enzymes. In this study, pectin utilization by the necrotroph Monilinia laxa 8L was studied by in vitro and in silico approaches. A total of 403 genes encoding carbohydrate-active enzymes (CAZymes) were identified, including 38 coding a predicted pectin-degrading activity. Analyzing the differences between M. laxa 8L exoproteomes in media containing glucose and pectin as sole carbon sources, we identified 107 pectin-specific proteins, among them, 64.48% harbor a classical secretory activity, including 42 CAZymes and six pectin-degrading proteins. Analyzing the gene-expression patterns of some pectinase families revealed their possible sequential action in pectin disassembly. We found, in vitro, an early pectin-dependent induction of MlRGAE1, MlPG1, and three members of the rhamnosidase family (MlαRHA2, MlαRHA3, and MlαRHA6) and late response of MlPG2 and MlPNL3. M. laxa 8L has the ability to use both pectin and byproducts as carbon sources, based on a functional pectinolytic machinery encoded in its genome, subjected to pectin-dependent regulation and appropriate secretion mechanisms of these pectinolytic enzymes. Differences in the secretion and transcription profile of M. laxa 8L provided insights into the different mechanisms that contribute to brown rot development.


Asunto(s)
Ascomicetos , Carbono/metabolismo , Genes Fúngicos , Pectinas/metabolismo , Ascomicetos/enzimología , Ascomicetos/genética , Pared Celular , Poligalacturonasa/genética , Proteoma , Transcriptoma
3.
Eur J Immunol ; 48(10): 1707-1716, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30051912

RESUMEN

Maintaining balanced levels of IL-1ß is extremely important to avoid host tissue damage during infection. Our goal was to understand the mechanisms behind the reduced pathology and decreased bacterial burdens in Ifnlr1-/- mice during lung infection with Staphylococcus aureus. Intranasal infection of Ifnlr1-/- mice with S. aureus led to significantly improved bacterial clearance, survival and decrease of proinflammatory cytokines in the airway including IL-1ß. Ifnlr1-/- mice treated with recombinant IL-1ß displayed increased bacterial burdens in the airway and lung. IL-1ß levels in neutrophils from Ifnlr1-/- infected mice lungs were decreased when compared to neutrophils from WT mice. Mice lacking NLRP3 and caspase-1 had reduced IL-1ß levels 4 h after infection, due to reductions or absence of active caspase-1 respectively, but levels at 24 h were comparable to WT infected mice. Ifnlr1-/- infected mice had decreases in both active caspase-1 and neutrophil elastase indicating an important role for the neutrophil serine protease in IL-1ß processing. By inhibiting neutrophil elastase, we were able to decrease IL-1ß levels by 39% in Nlrp3-/- infected mice when compared to WT mice. These results highlight the crucial role of both proteases in IL-1ß processing, via inflammasome-dependent and -independent mechanisms.


Asunto(s)
Caspasa 1/inmunología , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Elastasa de Leucocito/inmunología , Pulmón/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Caspasa 1/genética , Inmunidad Innata , Interleucina-1beta/farmacología , Elastasa de Leucocito/genética , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neutrófilos/inmunología , Receptores de Interferón/genética , Staphylococcus aureus
4.
J Infect Dis ; 218(4): 659-668, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378030

RESUMEN

Staphylococcus aureus is a major cause of both community- and healthcare-acquired pneumonias. Inducible costimulator (ICOS) is part of the CD28 family of proteins and is a target for immune checkpoint therapy. We found ICOS highly expressed on activated CD4 cells in response to S. aureus. In the absence of ICOS, mice had improved survival in a pneumonia model with the methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 and significant reductions in bacterial burden in a nonlethal acute pneumonia model. Infected Icos-/- mice had major reductions in several proinflammatory cytokines, neutrophils, inflammatory monocytes, and eosinophils compared to infected wild-type mice, while there was improved expression of CD11c and macrophage receptor with collagenous structure on the surface of alveolar macrophages. Early during infection infected Icos-/- mice had increased numbers of alveolar macrophages and expression of several surface markers on alveolar macrophages and neutrophils. ICOS signaling also contributed to the pathogenesis of the airway pathogens Klebsiella pneumoniae, Pseudomonas aeruginosa, and Streptococcus pneumoniae, and neutralizing antibody to ICOS led to improved clearance of S. aureus from the airway. Our results indicate that ICOS plays a significant role in orchestrating the innate immune response to S. aureus and other airway pathogens, and could be a potential immunomodulatory target to attenuate S. aureus-related immunopathology.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Neumonía Estafilocócica/patología , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Factores Inmunológicos/análisis , Proteína Coestimuladora de Linfocitos T Inducibles/deficiencia , Infecciones por Klebsiella/patología , Pulmón/patología , Macrófagos Alveolares/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones Neumocócicas/patología , Neumonía Estafilocócica/microbiología , Infecciones por Pseudomonas/patología , Análisis de Supervivencia
5.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38597953

RESUMEN

Environmental airborne antigens are central to the development of allergic asthma, but the cellular processes that trigger disease remain incompletely understood. In this report, Schmitt et al. (https://doi.org/10.1084/jem.20231236) identify TNF-like protein 1A (TL1A) as an epithelial alarmin constitutively expressed by a subset of lung epithelial cells, which is released in response to airborne microbial challenge and synergizes with IL-33 to drive allergic disease.


Asunto(s)
Asma , Hipersensibilidad , Humanos , Alarminas , Células Epiteliales , Pulmón
6.
mBio ; 15(7): e0113024, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38934617

RESUMEN

Type III interferon signaling contributes to the pathogenesis of the important human pathogen Staphylococcus aureus in the airway. Little is known of the cellular factors important in this response. Using Ifnl2-green fluorescent protein reporter mice combined with flow cytometry and cellular depletion strategies, we demonstrate that the alveolar macrophage is the primary producer of interferon lambda (IFN-λ) in response to S. aureus in the airway. Bone marrow chimeras showed reduced bacterial burden in IFN-λ receptor (IFNLR1)-deficient recipient mice, indicative that non-hematopoietic cells were important for pathogenesis, in addition to significant reductions in pulmonary inflammation. These observations were confirmed through the use of an airway epithelial-specific IFNLR knockout mouse. Our data suggest that upon entry to the airway, S. aureus activates alveolar macrophages to produce type III IFN that is subsequently sensed by the airway epithelium. Future steps will determine how signaling from the epithelium then exerts its influence on bacterial clearance. These results highlight the important, yet sometimes detrimental, role of type III IFN signaling during infection and the impact the airway epithelium plays during host-pathogen interactions.IMPORTANCEThe contribution of type III interferon signaling to the control of bacterial infections is largely unknown. We have previously demonstrated that it contributes to the pathogenesis of acute Staphylococcus aureus respiratory infection. In this report, we document the importance of two cell types that underpin this pathogenesis. We demonstrate that the alveolar macrophage is the cell that is responsible for the production of type III interferon and that this molecule is sensed by airway epithelial cells, which impacts both bacterial clearance and induction of inflammation. This work sheds light on the first two aspects of this important pathogenic cascade.


Asunto(s)
Interferones , Macrófagos Alveolares , Ratones Noqueados , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/genética , Ratones , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/inmunología , Infecciones Estafilocócicas/microbiología , Interferones/metabolismo , Interferones/genética , Interferones/inmunología , Ratones Endogámicos C57BL , Interacciones Huésped-Patógeno , Transducción de Señal , Mucosa Respiratoria/microbiología , Interferón lambda , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Virulencia
7.
Cell Rep Med ; 5(3): 101431, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38378002

RESUMEN

Sulfasalazine is a prodrug known to be effective for the treatment of inflammatory bowel disease (IBD)-associated peripheral spondyloarthritis (pSpA), but the mechanistic role for the gut microbiome in regulating its clinical efficacy is not well understood. Here, treatment of 22 IBD-pSpA subjects with sulfasalazine identifies clinical responders with a gut microbiome enriched in Faecalibacterium prausnitzii and the capacity for butyrate production. Sulfapyridine promotes butyrate production and transcription of the butyrate synthesis gene but in F. prausnitzii in vitro, which is suppressed by excess folate. Sulfasalazine therapy enhances fecal butyrate production and limits colitis in wild-type and gnotobiotic mice colonized with responder, but not non-responder, microbiomes. F. prausnitzii is sufficient to restore sulfasalazine protection from colitis in gnotobiotic mice colonized with non-responder microbiomes. These findings reveal a mechanistic link between the efficacy of sulfasalazine therapy and the gut microbiome with the potential to guide diagnostic and therapeutic approaches for IBD-pSpA.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Sulfasalazina/farmacología , Sulfasalazina/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Resultado del Tratamiento , Butiratos
8.
Toxics ; 11(11)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37999591

RESUMEN

Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to the mussel Mytilus galloprovincialis are amplified by a 96 h exposure to increased temperature (24 °C) and polyethylene microplastics (PE-MPs, 1 mg/L). Biochemical (neurotoxicity, energy metabolism, oxidative stress, and damage) and physiological (byssal thread production) responses were evaluated. The number of produced byssus greatly decreased under concomitant exposure to all stressors. The antioxidant defences were depleted in the gills of mussels exposed to temperature rises and PE-MPs, regardless of exudate exposure, preventing oxidative damage. Moreover, the heat shock protein content tended to decrease in all treatments relative to the control. The increased total glutathione in the mussels' digestive gland exposed to 24 °C, exudate, and PE-MPs avoided oxidative damage. Neurotoxicity was observed in the same treatment. In contrast, the energy metabolism remained unaltered. In conclusion, depending on the endpoint, simultaneous exposure to A. armata exudate, PE-MPs, and warming does not necessarily mean an amplification of their single effects. Studies focusing on the impact of multiple stressors are imperative to better understand the underlying mechanisms of this chronic exposure.

9.
Animals (Basel) ; 13(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37370519

RESUMEN

Bivalve mollusks represent a nutritious source with a low environmental impact; as a result, they are one of the most attractive aquaculture options. Advances in microencapsulation technology offer great potential to face key bivalve nutrition problems, and an alga-based microencapsulated diet can turn enriched bivalves into potential functional foods. The central goal of this study was the evaluation of food intake as a function of particle size and microalga content following the supply of four microencapsulated diets, incorporating as core material Nannochloropsis sp. or Tetraselmis sp. in 20 or 40 µm diameter pellets (diets N20, T20, N40, and T40, respectively) in five bivalve species (Magallana gigas, Solen marginatus, Ruditapes decussatus, Ruditapes philippinarum, and Cerastoderma edule). Overall, all tested diets were easily ingested, although food intake was higher for N20 (except for the S. marginatus, which showed a higher rate for the diet T40). Concerning a size-related analysis, C. edule and S. marginatus favored, respectively, smaller and bigger pellet-sized diets, with no signs of selectivity for microalga species. The diet T20 was the lesser ingested, except for C. edule. This knowledge enables a better selection of feed with appropriate and species-adjusted profiles, contributing to the optimization of microencapsulated diets for bivalve rearing and a better final product.

10.
J Innate Immun ; 14(5): 543-554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320810

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen that has recently emerged as a global threat associated with high morbidity, mortality, and antibiotic resistance. We determined the role of type I interferon (IFN) signaling in A. baumannii infection. We report that A. baumannii can induce a type I IFN response that is dependent upon TLR4-TRIF-IRF3 and phagocytosis of the bacterium. Phase variants of A. baumannii that have a reduced capsule, lead to enhanced TLR4-dependent type I IFN induction. This was also observed in a capsule-deficient strain. However, we did not observe a role for this pathway in vivo. The enhanced signaling could be accounted for by increased phagocytosis in capsule-deficient strains that also lead to enhanced host cell-mediated killing. The increased cytokine response in the absence of the capsule was not exclusive to type I IFN signaling. Several cytokines, including the proinflammatory IL-6, were increased in cells stimulated with the capsule-deficient strain, also observed in vivo. After 4 h in our acute pneumonia model, the burden of a capsule-null strain was significantly reduced, yet we observed increases in innate immune cells and inflammatory markers compared to wild-type A. baumannii. This study underscores the role of phase variation in the modulation of host immune responses and indicates that the capsule of A. baumannii plays an important role in protection against host cell killing and evasion from activation of the innate immune response.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones por Acinetobacter/microbiología , Citocinas , Humanos , Inmunidad Innata , Fagocitosis , Receptor Toll-Like 4
11.
Front Plant Sci ; 13: 818483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401637

RESUMEN

The necrotrophic pathogenic fungus Monilinia laxa causes brown rot disease on stone fruit generating significant yield losses. So far, a limited number of pathogenesis-related virulence factors, such as cell wall degrading enzymes and potential phytotoxins, have been described in Monilinia spp. Using RNA-sequencing data from highly virulent M. laxa ML8L strain at early stages of the infection process (6, 14, 24, and 48 h post-inoculation, hpi) on nectarine and the Pathogen-Host-Interactions (PHI) database, we selected a number of genes for further study and ranked them according to their transcription levels. We identified a class of genes highly expressed at 6 hpi and that their expression decreased to almost undetectable levels at 14 to 48 hpi. Among these genes we found Monilinia__061040 encoding a non-ribosomal peptide synthase (NRPS). Monilinia__061040 together with other five co-regulated genes, forms a secondary metabolism cluster potentially involved in the production of epipolythiodioxopiperazine (ETP) toxin. Quantitative-PCR data confirmed previous RNA sequencing results from the virulent ML8L strain. Interestingly, in a less virulent M. laxa ML5L strain the expression levels of this pathway were reduced compared to the ML8L strain during nectarine infection. In vitro experiments showed that liquid medium containing peach extract mimicked the results observed using nectarines. In fact, upregulation of the NRPS coding gene was also observed in minimal medium suggesting the existence of a fruit-independent mechanism of regulation for this putative toxin biosynthetic pathway that is also downregulated in the less virulent strain. These results emphasize the role of this secondary metabolism pathway during the early stage of brown rot disease development and show alternative models to study the induction of virulence genes in this fungus.

12.
Toxics ; 10(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35202230

RESUMEN

Plastic pollution and invasive species are recognised as pervasive threats to marine biodiversity. However, despite the extensive on-going research on microplastics' effects in the biota, knowledge on their combination with additional stressors is still limited. This study investigates the effects of polyamide microplastics (PA-MPs, 1 mg/L), alone and in combination with the toxic exudate from the invasive red seaweed Asparagopsis armata (2%), after a 96 h exposure, in the mussel Mytilus galloprovincialis. Biochemical responses associated with oxidative stress and damage, neurotoxicity, and energy metabolism were evaluated in different tissues (gills, digestive gland, and muscle). Byssus production and PA-MP accumulation were also assessed. Results demonstrated that PA-MPs accumulated the most in the digestive gland of mussels under PA-MP and exudate co-exposure. Furthermore, the combination of stressors also resulted in oxidative damage at the protein level in the gills as well as in a significant reduction in byssus production. Metabolic capacity increased in both PA-MP treatments, consequently affecting the energy balance in mussels under combined stress. Overall, results show a potential increase of PA-MPs toxicity in the presence of A. armata exudate, highlighting the importance of assessing the impact of microplastics in realistic scenarios, specifically in combination with co-occurring stressors, such as invasive species.

13.
Twin Res Hum Genet ; 14(3): 221-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21623651

RESUMEN

In twin pregnancy studies, molecular genetic techniques have rarely been used to determine zygosity, despite their known precision and accuracy. The present work aimed to assess the power of discrimination in zygosity assessment, using a set of microsatellite markers that were routinely used for aneuploidy screening by multiplex-PCR in a prenatal context. Rapid aneuploidy screening using a group of 20 microsatellite markers (STRs) located on chromosomes 13, 18, 21 and X has been performed in our lab for over 10 years, with a total of approximately 1,500 samples studied to date. A retrospective analysis of the 257 prenatal samples from multiple pregnancies was carried out. A subset of 14 cases presenting theoretical monozygosity were re-evaluated by the use of biostatistics tools accessed via the ZygProb website. Further monozygosity determination relative to dizygosity was calculated, given an estimated overall error value of 0.093%. The results show that monozygosity had been correctly determined in all our previously studied twins. This work demonstrates that accurate zygosity assessment can be achieved with the same STRs applied in aneuploidy screening with a high power of discrimination and a matching probability of over 99.999999%.


Asunto(s)
Aneuploidia , Embarazo Múltiple/genética , Femenino , Humanos , Repeticiones de Microsatélite , Embarazo , Atención Prenatal , Diagnóstico Prenatal , Estudios Retrospectivos , Gemelos Dicigóticos , Gemelos Monocigóticos
14.
J Fungi (Basel) ; 7(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430380

RESUMEN

Light represents a ubiquitous source of information for organisms to evaluate their environment. The influence of light on colony growth and conidiation was determined for three Monilinia laxa isolates. The highest mycelial growth rate was observed under red light for the three M. laxa isolates, followed by green light, daylight or darkness. However, reduced sporulation levels were observed in darkness and red light, but conidiation enhancement was found under daylight, black and green light with more hours of exposure to light. Putative photoreceptors for blue (white-collar and cryptochromes), green (opsins), and red light (phytochromes) were identified, and the photoresponse-related regulatory family of velvet proteins. A unique ortholog for each photoreceptor was found, and their respective domain architecture was highly conserved. Transcriptional analyses of uncovered sets of genes were performed under daylight or specific color light, and both in time course illumination, finding light-dependent triggered gene expression of MlVEL2, MlPHY2, MlOPS2, and MlCRY2, and color light as a positive inductor of MlVEL3, MlVEL4, MlPHY1, and MlCRY1 expression. M. laxa has a highly conserved set of photoreceptors with other light-responsive fungi. Our phenotypic analyses and the existence of this light-sensing machinery suggest transcriptional regulatory systems dedicated to modulating the development and dispersion of this pathogen.

15.
Toxics ; 9(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071183

RESUMEN

Ocean warming and biological invasions are among the most pervasive factors threatening coastal ecosystems with a potential to interact. Ongoing temperature rise may affect physiological and cellular mechanisms in marine organisms. Moreover, non-indigenous species spread has been a major challenge to biodiversity and ecosystem functions and services. The invasive red seaweed Asparagopsis armata has become successfully established in Europe. Its exudate has been considered deleterious to surrounding native species, but no information exists on its effect under forecasted temperature increase. This study evaluated the combined effects of temperature rise and A. armata exudate exposure on the native mussel Mytilus galloprovincialis. Oxidative stress, neurophysiological and metabolism related biomarkers were evaluated after a 96 h-exposure to exudate (0% and 2%) under present (20 °C) and warming (24 °C) temperature scenarios. Short-term exposure to A. armata exudate affected the oxidative stress status and neurophysiology of the mussels, with a tendency to an increasing toxic action under warming. Significant oxidative damage at protein level was observed in the digestive gland and muscle of individuals exposed simultaneously to the exudate and temperature rise. Thus, under a climate change scenario, it may be expected that prolonged exposure to the combined action of both stressors may compromise M. galloprovincialis fitness and survival.

16.
Parasit Vectors ; 14(1): 582, 2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34802463

RESUMEN

BACKGROUND: Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS: Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS: A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS: Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.


Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , África Occidental/epidemiología , Animales , Genes de Insecto , Insecticidas/efectos adversos , Malaria/transmisión , Mosquitos Vectores/genética , Mutación
17.
Sci Total Environ ; 777: 146072, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33684743

RESUMEN

Coral reefs are declining, affected by climate change and escalating anthropogenic pressures, such as pollution or habitat alteration. Consequently, ecotoxicological assays with tropical corals have increased, specifically towards the study of emergent or persistent pollutants. However, standardized methodology to test for corals is non-existent, and their response to organic solvents, recurrently required in ecotoxicological appraisals, remains unknown. Therefore, we aimed to establish a threshold for the safe use of the selected solvents in ecotoxicological studies with these organisms. We assessed the oxidative stress response (antioxidant response and oxidative damage), cellular energy allocation and photophysiology of the photosynthetic coral Zoanthus sp. (Anthozoa, Hexacorallia) exposed to six doses of three different organic solvents (ethanol, methanol and dimethyl sulfoxide - DMSO). Our results suggest that the coral is more sensitive to methanol and DMSO than to ethanol. Methanol and DMSO LOEC were 0.01 mL L-1 affecting maximum quantum yield (Fv/Fm) and glutathione S-transferase (GST) activity, respectively, while for ethanol was 0.03 mL L-1, influencing Fv/Fm. Despite the higher tolerance of Zoanthus sp. to ethanol, 2.9 mL L-1 of this organic solvent was the only treatment causing mortality. Based on these findings, thresholds for the use of organic solvents with tropical corals can now be adopted. Nevertheless, species specificities should not be overlooked.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Estrés Oxidativo , Solventes/toxicidad
18.
PLoS One ; 15(6): e0234242, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32520941

RESUMEN

Many vector-borne diseases circulate in the Republic of Cabo Verde. These include malaria during the colonization of the archipelago by the Portuguese explorers and several arboviruses such as yellow fever (now eradicated), dengue and zika. To control these vector-borne diseases, an integrated vector control program was implemented. The main targeted mosquito vectors are Aedes aegypti and Anopheles arabiensis, and in a lesser extent the potential arbovirus vector Culex pipiens s.l. The main control strategy is focused on mosquito aquatic stages using diesel oil and Temephos. This latter has been applied in Cabo Verde since 1979. Its continuous use was followed by the emergence of resistance in mosquito populations. We investigated the current susceptibility to Temephos of the three potential mosquito vectors of Cabo Verde through bioassays tests. Our results showed various degrees of susceptibility with 24h post-exposure mortality rates ranging from 43.1% to 90.9% using WHO diagnostic doses. A full susceptibility was however observed with Bacillus thurigiensis var israelensis with mortality rates from 99.6% to 100%.


Asunto(s)
Bacillus thuringiensis/fisiología , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Temefós , Animales , Bioensayo , Cruzamiento , Cabo Verde , Larva/efectos de los fármacos , Larva/microbiología , Estadística como Asunto
19.
Antibiotics (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076498

RESUMEN

The oxidative stress response is a key mechanism that microorganisms have to adapt to changeling environmental conditions. Adaptation is achieved by a fine-tuned molecular response that extends its influence to primary and secondary metabolism. In the past, the role of the intracellular redox status in the biosynthesis of tacrolimus in Streptomyces tsukubaensis has been briefly acknowledged. Here, we investigate the impact of the oxidative stress response on tacrolimus biosynthesis in S. tsukubaensis. Physiological characterization of S. tsukubaensis showed that the onset of tacrolimus biosynthesis coincided with the induction of catalase activity. In addition, tacrolimus displays antioxidant properties and thus a controlled redox environment would be beneficial for its biosynthesis. In addition, S. tsukubaensis ∆ahpC strain, a strain defective in the H2O2-scavenging enzyme AhpC, showed increased production of tacrolimus. Proteomic and transcriptomic studies revealed that the tacrolimus over-production phenotype was correlated with a metabolic rewiring leading to increased availability of tacrolimus biosynthetic precursors. Altogether, our results suggest that the carbon source, mainly used for cell growth, can trigger the production of tacrolimus by modulating the oxidative metabolism to favour a low oxidizing intracellular environment and redirecting the metabolic flux towards the increase availability of biosynthetic precursors.

20.
JCI Insight ; 5(7)2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32191638

RESUMEN

Acinetobacter baumannii (A. baumannii) is an extremely versatile multidrug-resistant pathogen with a very high mortality rate; therefore, it has become crucial to understand the host response during its infection. Given the importance of mice for modeling infection and their role in preclinical drug development, equal emphasis should be placed on the use of both sexes. Through our studies using a murine model of acute pneumonia with A. baumannii, we observed that female mice were more susceptible to infection. Likewise, treatment of male mice with estradiol increased their susceptibility to infection. Analysis of the airway compartment revealed enhanced inflammation and reduced neutrophil and alveolar macrophage numbers compared with male mice. Depletion of either neutrophils or alveolar macrophages was important for bacterial clearance; however, depletion of alveolar macrophages further exacerbated female susceptibility because of severe alterations in metabolic homeostasis. Our data highlight the importance of using both sexes when assessing host immune pathways.


Asunto(s)
Infecciones por Acinetobacter/inmunología , Susceptibilidad a Enfermedades/inmunología , Neumonía Bacteriana/inmunología , Caracteres Sexuales , Acinetobacter baumannii/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Macrófagos Alveolares/inmunología , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA