Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111565

RESUMEN

The latency-associated nuclear antigen from Kaposi's sarcoma-associated herpesvirus (KSHV), kLANA, and its homolog from the murid herpesvirus 4 (MuHV-4), mLANA, are essential for viral latency. kLANA is nearly four times the size of mLANA, mainly due to an extensive central repeat region that is absent in mLANA. Both proteins harbor a C-terminal DNA binding domain (DBD). The DBD binds the terminal repeat (TR) DNA sequences of the viral genome to mediate persistence. Despite structural conservation, the kLANA and mLANA DBDs differ in sequence and mode of oligomerization. kLANA DBD oligomers are flexible and bent, while mLANA DBD oligomers bind DNA in a rigid, linear conformation. We previously reported that kLANA and mLANA acted reciprocally on TR sequences. Furthermore, a MuHV-4 expressing kLANA instead of mLANA (v-kLANA) established latency in mice, albeit at a lower magnitude than the wild-type (WT) virus. Here, we asked if kLANA can accommodate the mLANA DBD and generated a fusion protein which contains kLANA but with the mLANA C-terminal region in place of that of kLANA. We report a recombinant MuHV-4 (v-KM) encoding this LANA fusion protein instead of mLANA. The fusion protein was expressed in lytic infection in vitro and assembled nuclear LANA dots in infected splenocytes. Results demonstrated that kLANA functionally accommodated mLANA's mode of DNA binding, allowing MuHV-4 chimeric virus to establish latency in vivo Notably, v-KM established latency in germinal center B cells more efficiently than did v-kLANA, although levels were reduced compared to WT MuHV-4.IMPORTANCE KSHV is a human oncogenic virus for which there is no tractable, immunocompetent animal model of infection. MuHV-4, a related rodent gammaherpesvirus, enables pathogenesis studies in mice. In latency, both viruses persist as extrachromosomal, circular genomes (episomes). LANA proteins encoded by KSHV (kLANA) and MuHV-4 (mLANA) contain a C-terminal DNA binding domain (DBD) that acts on the virus terminal repeats to enable episome persistence. mLANA is a smaller protein than kLANA. Their DBDs are structurally conserved but differ strikingly in the conformation of DNA binding. We report a recombinant, chimeric MuHV-4 which contains kLANA in place of mLANA, but in which the DBD is replaced with that of mLANA. Results showed that kLANA functionally accommodated mLANA's mode of DNA binding. In fact, the new chimeric virus established latency in vivo more efficiently than MuHV-4 expressing full-length kLANA.


Asunto(s)
Antígenos Virales/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 8/genética , Proteínas Nucleares/metabolismo , Rhadinovirus/genética , Secuencias Repetidas Terminales/genética , Células 3T3 , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , ADN Viral/genética , Genoma Viral/genética , Ratones , Latencia del Virus/genética
2.
J Immunol ; 196(9): 3642-52, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994218

RESUMEN

γδ T lymphocytes are programmed into distinct IFN-γ-producing CD27(+) (γδ27(+)) and IL-17-producing CD27(-) (γδ27(-)) subsets that play key roles in protective or pathogenic immune responses. Although the signature cytokines are shared with their αß Th1 (for γδ27(+)) and Th17 (for γδ27(-)) cell counterparts, we dissect in this study similarities and differences in the transcriptional requirements of murine effector γδ27(+), γδ27(-)CCR6(-), and γδ27(-)CCR6(+) γδ T cell subsets and αß T cells. We found they share dependence on the master transcription factors T-bet and RORγt for IFN-γ and IL-17 production, respectively. However, Eomes is fully dispensable for IFN-γ production by γδ T cells. Furthermore, the Th17 cell auxiliary transcription factors RORα and BATF are not required for IL-17 production by γδ27(-) cell subsets. We also show that γδ27(-) (but not γδ27(+)) cells become polyfunctional upon IL-1ß plus IL-23 stimulation, cosecreting IL-17A, IL-17F, IL-22, GM-CSF, and IFN-γ. Collectively, our in vitro and in vivo data firmly establish the molecular segregation between γδ27(+) and γδ27(-) T cell subsets and provide novel insight on the nonoverlapping transcriptional networks that control the differentiation of effector γδ versus αß T cell subsets.


Asunto(s)
Proteínas de Dominio T Box/metabolismo , Subgrupos de Linfocitos T/inmunología , Células Th17/inmunología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-17/biosíntesis , Interleucina-17/inmunología , Interleucina-17/metabolismo , Interleucina-1beta/inmunología , Interleucina-23/inmunología , Interleucinas/metabolismo , Activación de Linfocitos , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/análisis , Proteínas de Dominio T Box/genética , Subgrupos de Linfocitos T/fisiología , Factores de Transcripción/genética , Interleucina-22
3.
Nucleic Acids Res ; 43(20): 10039-54, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26424851

RESUMEN

Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1-2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer-dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1-2 and LBS2-1-3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.


Asunto(s)
Antígenos Virales/química , ADN Viral/química , Herpesvirus Humano 8 , Proteínas Nucleares/química , Rhadinovirus , Antígenos Virales/genética , Antígenos Virales/metabolismo , Sitios de Unión , ADN Viral/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Secuencias Repetidas Terminales , Termodinámica
4.
PLoS Pathog ; 9(10): e1003673, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146618

RESUMEN

Latency-associated nuclear antigen (LANA) mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Šresolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s).


Asunto(s)
ADN Viral/química , Pliegue de Proteína , Rhadinovirus/química , Proteínas Virales/química , Latencia del Virus , ADN Viral/genética , ADN Viral/metabolismo , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Rhadinovirus/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
J Biol Chem ; 288(6): 3858-70, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23258536

RESUMEN

γ-Herpesviruses express proteins that modulate B lymphocyte signaling to achieve persistent latent infections. One such protein is the M2 latency-associated protein encoded by the murid herpesvirus-4. M2 has two closely spaced tyrosine residues, Tyr(120) and Tyr(129), which are phosphorylated by Src family tyrosine kinases. Here we used mass spectrometry to identify the binding partners of tyrosine-phosphorylated M2. Each M2 phosphomotif is shown to bind directly and selectively to SH2-containing signaling molecules. Specifically, Src family kinases, NCK1 and Vav1, bound to the Tyr(P)(120) site, PLCγ2 and the SHP2 phosphatase bound to the Tyr(P)(129) motif, and the p85α subunit of PI3K associated with either motif. Consistent with these data, we show that M2 coordinates the formation of multiprotein complexes with these proteins. The effect of those interactions is functionally bivalent, because it can result in either the phosphorylation of a subset of binding proteins (Vav1 and PLCγ2) or in the inactivation of downstream targets (AKT). Finally, we show that translocation to the plasma membrane and subsequent M2 tyrosine phosphorylation relies on the integrity of a C-terminal proline-rich SH3 binding region of M2 and its interaction with Src family kinases. Unlike other γ-herpesviruses, that encode transmembrane proteins that mimic the activation of ITAMs, murid herpesvirus-4 perturbs B cell signaling using a cytoplasmic/membrane shuttling factor that nucleates the assembly of signaling complexes using a bilayered mechanism of phosphotyrosine and proline-rich anchoring motifs.


Asunto(s)
Linfocitos B/metabolismo , Infecciones por Herpesviridae/metabolismo , Complejos Multiproteicos/metabolismo , Muromegalovirus/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Animales , Linfocitos B/virología , Membrana Celular/genética , Membrana Celular/metabolismo , Infecciones por Herpesviridae/genética , Ratones , Complejos Multiproteicos/genética , Muromegalovirus/genética , Unión Proteica , Transporte de Proteínas/genética , Proteínas Virales/genética , Dominios Homologos src
6.
ACS Cent Sci ; 9(5): 892-904, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37252343

RESUMEN

Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability. Here we report a new approach to target and degrade RNA using small molecules, proximity-induced nucleic acid degrader (PINAD). We have utilized this strategy to design two families of RNA degraders which target two different RNA structures within the genome of SARS-CoV-2: G-quadruplexes and the betacoronaviral pseudoknot. We demonstrate that these novel molecules degrade their targets using in vitro, in cellulo, and in vivo SARS-CoV-2 infection models. Our strategy allows any RNA binding small molecule to be converted into a degrader, empowering RNA binders that are not potent enough to exert a phenotypic effect on their own. PINAD raises the possibility of targeting and destroying any disease-related RNA species, which can greatly expand the space of druggable targets and diseases.

7.
PLoS One ; 3(2): e1654, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18301737

RESUMEN

To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell.


Asunto(s)
Gammaherpesvirinae/química , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Proteínas Virales/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Transducción de Señal , Proteínas de la Matriz Viral , Latencia del Virus
8.
J Virol ; 80(12): 6123-35, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16731951

RESUMEN

Gammaherpesviruses subvert eukaryotic signaling pathways to favor latent infections in their cellular reservoirs. To this end, they express proteins that regulate or replace functionally specific signaling proteins of eukaryotic cells. Here we describe a new type of such viral-host interaction that is established through M2, a protein encoded by murine gammaherpesvirus 68. M2 associates with Vav proteins, a family of phosphorylation-dependent Rho/Rac exchange factors that play critical roles in lymphocyte signaling. M2 expression leads to Vav1 hyperphosphorylation and to the subsequent stimulation of its exchange activity towards Rac1, a process mediated by the formation of a trimolecular complex with Src kinases. This heteromolecular complex is coordinated by proline-rich and Src family-dependent phosphorylated regions of M2. Infection of Vav-deficient mice with gammaherpesvirus 68 results in increased long-term levels of latency in germinal center B lymphocytes, corroborating the importance of the M2/Vav cross talk in the process of viral latency. These results reveal a novel strategy used by the murine gammaherpesvirus family to subvert the lymphocyte signaling machinery to its own benefit.


Asunto(s)
Linfocitos B/virología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Rhadinovirus/fisiología , Proteínas de la Matriz Viral/fisiología , Latencia del Virus , Animales , Ratones , Fosforilación , Receptor Cross-Talk , Rhadinovirus/química , Proteína de Unión al GTP rac1/metabolismo
9.
J Gen Virol ; 84(Pt 9): 2459-2471, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12917467

RESUMEN

Chordate poxviruses encode several uncharacterized POZ-kelch proteins and three of these are present in Vaccinia virus (VV) strain Western Reserve. VV gene C2L is predicted to encode a protein of 512 amino acid residues with a POZ/BTB domain in the N-terminal region and three kelch motifs in the C-terminal half of the protein. We have identified the C2L gene product as an intracellular protein of 56 kDa and constructed and characterized a VV mutant lacking the C2L gene (v Delta C2L). Compared to wild-type and revertant viruses, v Delta C2L had unaltered growth in vitro, but had a different plaque morphology due to an altered cytopathic effect (CPE) of infected cells. Deleting C2L had no effect on VV-induced formation of actin tails or enhanced cell motility, but affected the development of VV-induced cellular projections and the Ca(2+)-independent cell/extracellular matrix adhesion late during infection. In an intranasal mouse model, C2L did not contribute to virus virulence. However, in an intradermal mouse model, infection with v Delta C2L resulted in larger lesions and more cell infiltration into the infected ears during recovery from infection. Thus, in this model, C2L protein inhibits inflammation and reduces immunopathology. In summary, we found that C2L is not required for virus replication in vitro but contributes to aspects of VV-induced CPE and reduces immunopathology in vivo.


Asunto(s)
Proteínas Portadoras/fisiología , Enfermedades Cutáneas Virales/virología , Virus Vaccinia/fisiología , Vaccinia/virología , Proteínas Virales/fisiología , Animales , Calcio/farmacología , Proteínas Portadoras/química , Línea Celular , Efecto Citopatogénico Viral , Modelos Animales de Enfermedad , Matriz Extracelular/virología , Femenino , Inflamación/patología , Ratones , Ratones Endogámicos BALB C , Mutación , Enfermedades Cutáneas Virales/patología , Vaccinia/patología , Virus Vaccinia/patogenicidad , Proteínas Virales/química , Virulencia , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA