Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Exp Allergy ; 52(5): 684-696, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35212058

RESUMEN

BACKGROUND: Some cohort studies have suggested that gut microbiota composition is associated with allergic diseases in children. The microbiota of the first-pass meconium, which forms before birth, represents the first gut microbiota that is easily available for research and little is known about any relationship with allergic disease development. OBJECTIVE: We investigated whether the bacterial composition of the first-pass meconium is associated with the development of allergic diseases before 4 years of age. METHODS: Prospective birth cohort study. Bacterial composition of first-pass meconium was analysed using bacterial 16S rRNA gene amplicon sequencing. Atopic and allergic diseases were evaluated via online survey or telephone to age 4 years, based on the International Study of Asthma and Allergies in Childhood questionnaire. RESULTS: During a 6-week period in 2014, 312 children were born at the Central Finland Central Hospital. Meconium was collected from 212 at a mean of 8-hour age. Outcome data at 4 years were available for 177 (83%) children, and 159 of these had sufficient amplification of bacterial DNA in meconium. Meconium microbiota composition, including diversity indices and relative abundances of the main phyla and genera, was not associated with subsequent atopic eczema, wheezing or cow's milk allergy. Principal components analysis did not identify any clustering of the meconium microbiomes of children with respect to wheezing or cow's milk allergy. CONCLUSIONS: We found no evidence that gut microbiota composition of first-pass meconium is associated with atopic manifestations to age 4 years. However, larger studies are needed to fully exclude a relationship.


Asunto(s)
Dermatitis Atópica , Microbiota , Hipersensibilidad a la Leche , Animales , Bacterias , Bovinos , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Meconio , Hipersensibilidad a la Leche/complicaciones , Estudios Prospectivos , ARN Ribosómico 16S/genética , Ruidos Respiratorios
2.
Pediatr Res ; 91(1): 154-162, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33824448

RESUMEN

BACKGROUND: Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. METHODS: This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. RESULTS: Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). CONCLUSIONS: Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. IMPACT: Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant's gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Niño , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Estudios Prospectivos
3.
Environ Microbiol ; 23(11): 6694-6706, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382316

RESUMEN

Microbial communities contribute greatly to groundwater quality, but the impacts of land-use practices on bacteria in groundwaters and groundwater-dependent ecosystems remain poorly known. With 16S rRNA gene amplicon sequencing, we assessed bacterial community composition at the groundwater-surface water ecotone of boreal springs impacted by urbanization and agriculture, using spring water nitrate-N as a surrogate of contamination. We also measured the rate of a key ecosystem process, organic matter decomposition. We documented a recurrent pattern across all major bacterial phyla where diversity started to decrease at unexpectedly low nitrate-N concentrations (100-300 µg L-1 ). At 400 NO3 - -N µg L-1 , 25 bacterial exact sequence variants showed a negative response, resulting in a distinct threshold in bacterial community composition. Chthonomonas, Acetobacterales and Hyphomicrobium were the most sensitive taxa, while only three taxa (Duganella, Undibacterium and Thermoanaerobaculaceae) were enriched due to increased contamination. Decomposition rate responded unimodally to increasing nitrate-N concentration, with a peak rate at ~400 NO3 - -N µg L-1 , parallelly with a major shift in bacterial community composition. Our results emphasize the utility of bacterial communities in the assessment of groundwater-dependent ecosystems. They also call for a careful reconsideration of threshold nitrate values for defining groundwater ecosystem health and protecting their microbial biodiversity.


Asunto(s)
Agua Subterránea , Microbiota , Contaminantes Químicos del Agua , Bacterias/genética , Agua Subterránea/microbiología , Microbiota/genética , Nitratos/análisis , ARN Ribosómico 16S/genética , Agua , Contaminantes Químicos del Agua/análisis
4.
Pediatr Res ; 88(5): 776-783, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053826

RESUMEN

BACKGROUND: Recent studies have shown a diverse microbiome in the first stool after birth. The clinical significance of the microbiome of the first stool is not known. Infantile colic has earlier been associated with the composition of the intestinal microbiome. METHODS: We set out to test whether the microbiome of the first stool is associated with subsequent infantile colic in a prospective, population-based cohort study of 212 consecutive newborn infants. We used next-generation sequencing of the bacterial 16S rRNA gene. RESULTS: The newborns who later developed infantile colic (n = 19) had a lower relative abundance of the genus Lactobacillus and the phylum Firmicutes in the first stool than those who remained healthy (n = 139). By using all microbiome data, random forest algorithm classified newborn with subsequent colic and those who remained healthy with area under the curve of 0.66 (SD 0.03) as compared to that of shuffled samples (P value <0.001). CONCLUSIONS: In this prospective, population-based study, the microbiome of the first-pass meconium was associated with subsequent infantile colic. Our results suggest that the pathogenesis of infantile colic is closely related to the intestinal microbiome at birth.


Asunto(s)
Bacterias/aislamiento & purificación , Cólico/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Meconio/microbiología , Bacterias/genética , Cólico/diagnóstico , Disbiosis , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Estudios Prospectivos , Ribotipificación
5.
Nat Chem Biol ; 12(5): 332-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26974813

RESUMEN

Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health.


Asunto(s)
Hidroxibutiratos/metabolismo , Radical Hidroxilo/toxicidad , Methylobacterium extorquens/metabolismo , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Peróxido de Hidrógeno , Radical Hidroxilo/metabolismo , Hierro , Estructura Molecular , Pinus/microbiología , Enfermedades de las Plantas , Plantones
6.
Pediatr Res ; 84(3): 371-379, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29538354

RESUMEN

BACKGROUND: Meconium is formed before birth and may reflect the microbiome of the fetus. To test our hypothesis, we investigated whether maternal factors during pregnancy, such as biodiversity of the living environment, influence the microbiome of the first stool more than immediate perinatal factors. METHODS: We recruited 218 consecutive newborn infants from one hospital. Regions of the bacterial 16S rRNA gene were sequenced to characterize the microbiomes of the first-pass meconium samples (N=212). We used a multivariate model to determine both the prenatal and perinatal factors affecting the microbiome. RESULTS: The number of operational taxonomic units ranged from 0 to 448 per newborn. The most abundant phyla were Firmicutes, with a relative abundance of 44%, Proteobacteria, 28%, and Bacteroidetes, 15%. By a multivariate analysis, the biodiversity of the home environment increased the diversity of microbiomes, whereas perinatal factors, such as the delivery mode or exposure to antimicrobials during labor did not have an effect. CONCLUSION: The microbiome of the first-pass meconium was not altered by immediate perinatal factors, but was affected by maternal factors during pregnancy, implying the in utero transfer of microbes and the development of the gut microbiota niche in fetal life.


Asunto(s)
Microbioma Gastrointestinal , Meconio/microbiología , Bacteroidetes , Biodiversidad , Biología Computacional , Femenino , Finlandia , Firmicutes , Humanos , Recién Nacido , Exposición Materna , Análisis Multivariante , Embarazo , Atención Prenatal , Análisis de Componente Principal , Proteobacteria , ARN Ribosómico 16S/genética , Encuestas y Cuestionarios
7.
Eur J Clin Microbiol Infect Dis ; 37(10): 1881-1891, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30006660

RESUMEN

As urinary tract infection (UTI) pathogens originate from the gut, we hypothesized that the gut environment reflected by intestinal microbiome influences the risk of UTI. Our prospective case-control study compared the intestinal microbiomes of 37 children with a febrile UTI with those of 69 healthy children. We sequenced the regions of the bacterial 16S rRNA gene and used the LefSe algorithm to calculate the size of the linear discriminant analysis (LDA) effect. We measured fecal lactoferrin and iron concentrations and quantitative PCR for Escherichia coli. At the phylum level, there were no significant differences. At the genus level, Enterobacter was more abundant in UTI patients with an LDA score > 3 (log 10), while Peptostreptococcaceae were more abundant in healthy subjects with an LDA score > 3 (log 10). In total, 20 OTUs with significantly different abundances were observed. Previous use of antimicrobials did not associate with intestinal microbiome. The relative abundance of E. coli was 1.9% in UTI patients and 0.5% in controls (95% CI of the difference-0.8 to 3.6%). The mean concentration of E.coli in quantitative PCR was 0.14 ng/µl in the patients and 0.08 ng/µl in the controls (95% CI of the difference-0.04 to 0.16). Fecal iron and lactoferrin concentrations were similar between the groups. At the family and genus level, we noted several differences in the intestinal microbiome between children with UTI and healthy children, which may imply that the gut environment is linked with the risk of UTI in children.


Asunto(s)
Microbioma Gastrointestinal , Infecciones Urinarias/microbiología , Estudios de Casos y Controles , Preescolar , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Heces/química , Heces/microbiología , Femenino , Humanos , Lactante , Hierro/análisis , Lactoferrina/análisis , Masculino , Estudios Prospectivos , ARN Ribosómico 16S/genética , Factores de Riesgo
8.
J Virol ; 90(4): 1918-30, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656684

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) infection is the leading cause of chronic liver diseases. Water extracts of the leaves of the wild Egyptian artichoke (WEA) [Cynara cardunculus L. var. sylvestris (Lam.) Fiori] have been used for centuries in the Sinai Peninsula to treat hepatitis symptoms. Here we isolated and characterized six compounds from the water extracts of WEA and evaluated their HCV inhibition capacities in vitro. Importantly, two of these compounds, grosheimol and cynaropicrin, inhibited HCV with half-maximal effective concentrations (EC50s) in the low micromolar range. They inhibited HCV entry into target cells and were active against both cell-free infection as well as cell-cell transmission. Furthermore, the antiviral activity of both compounds was pan-genotypic as HCV genotypes 1a, 1b, 2b, 3a, 4a, 5a, 6a, and 7a were inhibited. Thus, grosheimol and cynaropicrin are promising candidates for the development of new pan-genotypic entry inhibitors of HCV infection. IMPORTANCE: Because there is no preventive HCV vaccine available today, the discovery of novel anti-HCV cell entry inhibitors could help develop preventive measures against infection. The present study describes two compounds isolated from the wild Egyptian artichoke (WEA) with respect to their structural elucidation, absolute configuration, and quantitative determination. Importantly, both compounds inhibited HCV infection in vitro. The first compound was an unknown molecule, and it was designated "grosheimol," while the second compound is the known molecule cynaropicrin. Both compounds belong to the group of sesquiterpene lactones. The mode of action of these compounds occurred during the early steps of the HCV life cycle, including cell-free and cell-cell infection inhibition. These natural compounds present promising candidates for further development into anti-HCV therapeutics.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Cynara/química , Hepacivirus/efectos de los fármacos , Extractos Vegetales/farmacología , Antivirales/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Hepacivirus/fisiología , Lactonas/aislamiento & purificación , Lactonas/farmacología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Internalización del Virus/efectos de los fármacos
9.
J Nat Prod ; 79(4): 685-90, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27057690

RESUMEN

Three new epithiodiketopiperazine natural products [outovirin A (1), outovirin B (2), and outovirin C (3)] resembling the antifungal natural product gliovirin have been identified in extracts of Penicillium raciborskii, an endophytic fungus isolated from Rhododendron tomentosum. The compounds are unusual for their class in that they possess sulfide bridges between α- and ß-carbons rather than the typical α-α bridging. To our knowledge, outovirin A represents the first reported naturally produced epimonothiodiketopiperazine, and antifungal outovirin C is the first reported trisulfide gliovirin-like compound. This report describes the identification and structural elucidation of the compounds by LC-MS/MS and NMR.


Asunto(s)
Antifúngicos/aislamiento & purificación , Penicillium/química , Piperazinas/aislamiento & purificación , Rhododendron/microbiología , Antifúngicos/química , Antifúngicos/farmacología , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Piperazinas/química , Piperazinas/farmacología
10.
Nat Prod Rep ; 31(5): 628-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24686921

RESUMEN

Covering up to the end of August 2013. Phenalenones are members of a unique class of natural polyketides exhibiting diverse biological potential. This is a comprehensive review of 72 phenalenones with diverse structural features originating from fungal sources. Their bioactive potential and structure elucidation are discussed along with a review of their biosynthetic pathways and the taxonomical relationship between the fungi producing these natural products.


Asunto(s)
Hongos/química , Fenalenos/química , Filogenia , Sintasas Poliquetidas/metabolismo , Productos Biológicos/química , Estructura Molecular , Fenalenos/aislamiento & purificación , Fenalenos/metabolismo , Policétidos/química , Policétidos/aislamiento & purificación , Policétidos/metabolismo
11.
Environ Microbiome ; 19(1): 7, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254194

RESUMEN

BACKGROUND: Bilberry (Vaccinium myrtillus L.) is one of the most important economic and natural resources in Northern Europe. Despite its importance, the endophytic fungal community of the fruits has rarely been investigated. Biogeographic patterns and determinants of the fungal diversity in the bilberry fruit are poorly understood, albeit fungal endophytes can have a close relationship with the host plants. Here, we investigated the effect of climatic regions, and their weather conditions within growth season and soil properties on fungal endophytic communities of bilberry fruits collected from northern and southern regions of Finland using high-throughput sequencing technology targeting the internal transcribed spacer 2 ribosomal DNA region for fungi. RESULTS: Species richness and beta diversity (variation in community structure) were higher in the southern compared to the studied northern region. The weather condition of the growth season drove both fungal richness and community structure. Furthermore, abundance of the genera Venturia, Cladosporium, and Podosphaera was influenced by the weather, being different between the south and north regions. CONCLUSIONS: We conclude that diversity and assembly structure of the fungal endophytes in bilberry fruits follow similar patterns as for foliar fungal endophytes, being shaped by various environmental factors, such as the climate and surrounding vegetation.

12.
Front Plant Sci ; 15: 1302705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390299

RESUMEN

Methylorubrum extorquens DSM13060 is an endosymbiont that lives in the cells of shoot tip meristems. The bacterium is methylotrophic and consumes plant-derived methanol for the production of polyhydroxybutyrate (PHB). The PHB provides protection against oxidative stress for both host and endosymbiont cells through its fragments, methyl-esterified 3-hydroxybutyrate (ME-3HB) oligomers. We evaluated the role of the genes involved in the production of ME-3HB oligomers in the host colonization by the endosymbiont M. extorquens DSM13060 through targeted genetic mutations. The strains with deletions in PHB synthase (phaC), PHB depolymerase (phaZ1), and a transcription factor (phaR) showed altered PHB granule characteristics, as ΔphaC had a significantly low number of granules, ΔphaR had a significantly increased number of granules, and ΔphaZ1 had significantly large PHB granules in the bacterial cells. When the deletion strains were exposed to oxidative stress, the ΔphaC strain was sensitive to 10 mM HO· and 20 mM H2O2. The colonization of the host, Scots pine (Pinus sylvestris L.), by the deletion strains varied greatly. The deletion strain ΔphaR colonized the host mainly intercellularly, whereas the ΔphaZ1 strain was a slightly poorer colonizer than the control. The deletion strain ΔphaC lacked the colonization potential, living mainly on the surfaces of the epidermis of pine roots and shoots in contrast to the control, which intracellularly colonized all pine tissues within the study period. In earlier studies, deletions within the PHB metabolic pathway have had a minor effect on plant colonization by rhizobia. We have previously shown the association between ME-3HB oligomers, produced by PhaC and PhaZ1, and the ability to alleviate host-generated oxidative stress during plant infection by the endosymbiont M. extorquens DSM13060. Our current results show that the low capacity for PHB synthesis leads to poor tolerance of oxidative stress and loss of colonization potential by the endosymbiont. Altogether, our findings demonstrate that the metabolism of PHB in M. extorquens DSM13060 is an important trait in the non-rhizobial endosymbiosis.

13.
Mycorrhiza ; 23(1): 1-10, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22592854

RESUMEN

Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.


Asunto(s)
Biodiversidad , Hongos/aislamiento & purificación , Raíces de Plantas/microbiología , Poaceae/microbiología , Primulaceae/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Secuencia de Bases , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Endófitos , Hongos/clasificación , Hongos/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Árboles
14.
Heliyon ; 9(1): e12821, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36691525

RESUMEN

Floating hook-moss (Warnstorfia fluitans) is a bryophyte growing in northern aquatic and peatland ecosystems. W. fluitans uptakes metals and excessive amounts of nitrogen from wastewater, which suggests that it may have commercial potential for use in phytoremediation. Optimization of growth conditions would allow artificial cultivation of floating hook moss in large quantities for phytoremediation applications. We tested how application of combined nutrient (NPK 7-2-2 ranging from 0.1 to 1 ml per liter of water) and water flow (ranging from 0.15 to 1.9 ml/min) treatments affect growth of W. fluitans in greenhouse conditions. At the end of the experiment, all treatment combinations were subjected to an additional cold room condition at low temperature (0-2 °C) without constant water flow. The moss generally produced biomass in the various treatment combinations. However, contrary to our expectations, we found that increase of nutrients and water flow had a negative effect on the growth of W. fluitans. The highest growth rates in the experiment were detected in the control unit that had no nutrient addition or applied water flow. Our results suggest that cold temperatures are beneficial for W. fluitans growth. Our results show that the commercial production of W. fluitans may not require nutrient or water flow manipulation, at least in the tested scale. Instead, the growth conditions should mimic the natural cold climate conditions of W. fluitans habitats in northern peatlands and/or spring ecosystems.

15.
BMC Plant Biol ; 12: 180, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23035776

RESUMEN

BACKGROUND: Plant defensins represent a major innate immune protein superfamily that displays strong inhibitory effects on filamentous fungi. The total number of plant defensins in a conifer species is unknown since there are no sequenced conifer genomes published, however the genomes of several angiosperm species provide an insight on the diversity of plant defensins. Here we report the identification of five new defensin-encoding genes from the Picea glauca genome and the characterization of two of their gene products, named PgD5 and endopiceasin. RESULTS: Screening of a P. glauca EST database with sequences of known plant defensins identified four genes with homology to the known P. glauca defensin PgD1, which were designated PgD2-5. Whereas in the mature PgD2-4 only 7-9 amino acids differed from PgD1, PgD5 had only 64% sequence identity. PgD5 was amplified from P. glauca genomic DNA by PCR. It codes for a precursor of 77-amino acid that is fully conserved within the Picea genus and has similarity to plant defensins. Recombinant PgD5, produced in Escherichia coli, had a molecular mass of 5.721 kDa, as determined by mass spectrometry. The PgD5 peptide exhibited strong antifungal activity against several phytopathogens without any effect on the morphology of the treated fungal hyphae, but strongly inhibited hyphal elongation. A SYTOX uptake assay suggested that the inhibitory activity of PgD5 could be associated with altering the permeability of the fungal membranes. Another completely unrelated defensin gene was identified in the EST library and named endopiceasin. Its gene codes for a 6-cysteine peptide that shares high similarity with the fungal defensin plectasin. CONCLUSIONS: Screening of a P. glauca EST database resulted in the identification of five new defensin-encoding genes. PgD5 codes for a plant defensin that displays non-morphogenic antifungal activity against the phytopathogens tested, probably by altering membrane permeability. PgD5 has potential for application in the plant biotechnology sector. Endopiceasin appears to derive from an endo- or epiphytic fungal strain rather than from the plant itself.


Asunto(s)
Antifúngicos/farmacología , Secuencia Conservada , Defensinas/genética , Defensinas/farmacología , Genes de Plantas/genética , Picea/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cationes/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Biología Computacional , Defensinas/química , Hongos/efectos de los fármacos , Calor , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Compuestos Orgánicos/metabolismo , Péptidos/genética , Picea/citología , Picea/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
16.
Tree Physiol ; 42(2): 391-410, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34328183

RESUMEN

Microbes living in plant tissues-endophytes-are mainly studied in crop plants where they typically colonize the root apoplast. Trees-a large carbon source with a high capacity for photosynthesis-provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant-endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.


Asunto(s)
Pinus sylvestris , Pinus , Endófitos/fisiología , Meristema , Pinus/genética , Plantones
17.
Gut Microbes ; 14(1): 2096995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35866234

RESUMEN

The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Enfermedades de la Piel , Disbiosis/terapia , Humanos , Prebióticos , Probióticos/uso terapéutico , Piel , Enfermedades de la Piel/terapia
18.
FEMS Microbiol Ecol ; 97(8)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34251452

RESUMEN

Wild berries are interesting research subjects due to their rich sources of health-beneficial phenolic compounds. However, the internal microbial communities, endophytes, associated with the wild berry fruits are currently unknown. Endophytes are bacteria or fungi inhabiting inside plant tissues, and their functions vary depending on the host species and environmental parameters. The present study aimed to examine community composition of fungal and bacterial endophytes in fruits of three wild berry species (bilberry Vaccinium myrtillus L., lingonberry Vaccinium vitis-idaea L. and crowberry Empetrum nigrum L.) and the effects of host plant species and their growth sites on shaping the endophytic communities. We found that the endophytic community structures differed between the berry species, and fungi were predominant over bacteria in the total endophytic taxa. We identified previously unknown endophytic fungal taxa including Angustimassarina, Dothidea, Fellozyma, Pseudohyphozyma, Hannaella coprosmae and Oberwinklerozyma straminea. A role of soluble phenolic compounds, the intracellular components in wild berry fruits, in shaping the endophytic communities is proposed. Overall, our study demonstrates that each berry species harbors a unique endophytic community of microbes.


Asunto(s)
Vaccinium myrtillus , Vaccinium vitis-Idaea , Basidiomycota , Endófitos/genética , Frutas , Humanos
19.
Microorganisms ; 9(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924411

RESUMEN

Microbiological tools, biofertilizers, and biocontrol agents, which are bacteria and fungi capable of providing beneficial outcomes in crop plant growth and health, have been developed for several decades. Currently we have a selection of strains available as products for agriculture, predominantly based on plant-growth-promoting rhizobacteria (PGPR), soil, epiphytic, and mycorrhizal fungi, each having specific challenges in their production and use, with the main one being inconsistency of field performance. With the growing global concern about pollution, greenhouse gas accumulation, and increased need for plant-based foods, the demand for biofertilizers and biocontrol agents is expected to grow. What are the prospects of finding solutions to the challenges on existing tools? The inconsistent field performance could be overcome by using combinations of several different types of microbial strains, consisting various members of the full plant microbiome. However, a thorough understanding of each microbiological tool, microbial communities, and their mechanisms of action must precede the product development. In this review, we offer a brief overview of the available tools and consider various techniques and approaches that can produce information on new beneficial traits in biofertilizer and biocontrol strains. We also discuss innovative ideas on how and where to identify efficient new members for the biofertilizer and biocontrol strain family.

20.
Trends Microbiol ; 29(1): 19-27, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32593503

RESUMEN

Amplicon sequencing of partial regions of the ribosomal RNA loci (rDNA) is widely used to profile microbial communities. However, the rDNA is dynamic and can exhibit substantial interspecific and intraspecific variation in copy number in prokaryotes and, especially, in microbial eukaryotes. As change in rDNA copy number is a common response to environmental change, rDNA copy number is not necessarily a property of a species. Variation in rDNA copy number, especially the capacity for large intraspecific changes driven by external cues, complicates analyses of rDNA amplicon sequence data. We highlight the need to (i) interpret amplicon sequence data in light of possible interspecific and intraspecific variation, and (ii) examine the potential plasticity in rDNA copy number as an important ecological factor to better understand how microbial communities are structured in heterogeneous environments.


Asunto(s)
Bacterias/genética , Variaciones en el Número de Copia de ADN , ADN Ribosómico/genética , Microbiota , Bacterias/clasificación , Bacterias/aislamiento & purificación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA