Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Chem Chem Phys ; 14(27): 9683-95, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22692447

RESUMEN

Carbon supported PdCo catalysts in varying atomic ratios of Pd to Co, namely 1 : 1, 2 : 1 and 3 : 1, were prepared. The oxygen reduction reaction (ORR) was studied on commercial carbon-supported Pd and carbon-supported PdCo nanocatalysts in aqueous 0.1 M KOH solution with and without methanol. The structure, dispersion, electrochemical characterization and surface area of PdCo/C were determined by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV), respectively. The electrochemical activity for ORR was evaluated from Linear Sweep Voltammograms (LSV) obtained using a rotating ring disk electrode. The catalysts were evaluated for their electrocatalytic activity towards oxygen reduction reaction (ORR) in Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs). PdCo(3 : 1)/C gives higher performance (85 mW cm(-2)) than PdCo(1 : 1)/C, PdCo(2 : 1)/C and Pd/C. The maximum electrocatalytic activity for ORR in the presence of methanol was observed for PdCo(3 : 1)/C. First principles calculations within the framework of density functional theory were performed to understand the origin of its catalytic activity based on the energy of adsorption of an O(2) molecule on the cluster, structural variation and charge transfer mechanism.

2.
Phys Chem Chem Phys ; 13(27): 12623-34, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21670821

RESUMEN

Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.

3.
Indian J Gastroenterol ; 19(1): 36-7, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10659490

RESUMEN

A 75-year-old woman presented with a painful abdominal lump. Clinically and sonographically it was diagnosed as an abscess. Surgical exploration revealed a Spigelian hernia with Richter's type of strangulation. The strangulated portion of the ileum had perforated, leading to abscess formation.


Asunto(s)
Absceso Abdominal/diagnóstico , Hernia Ventral/complicaciones , Hernia Ventral/diagnóstico , Enfermedades del Íleon/etiología , Anciano , Femenino , Hernia/etiología , Hernia Ventral/cirugía , Humanos
5.
Biopolymers ; 29(4-5): 771-83, 1990.
Artículo en Inglés | MEDLINE | ID: mdl-2383642

RESUMEN

Monte Carlo computer simulation is described for the dinucleotide duplex rGpC together with 562 water molecules at an environmental density of 1 g/cc in a cubic cell under periodic boundary conditions. Water-water interactions were treated using the TIP4P potential and the solute water interactions by TIP4P spliced with the nonbonded interactions from the AMBER 3.0 force field. The simulation was subjected to proximity analysis to obtain solute coordinate numbers and pair interaction energies for each solute atom. Hydration density distributions partitioned into contributions from the major groove side, the minor groove side and the sugar-phosphate backbone were examined, and the probabilities of occurrence for one- and two-water bridges in the simulation were enumerated. The results were compared with observations of crystallographic ordered water sites from x-ray diffraction studies on G and C containing small molecules, and in crystal structure determinations of the sodium, calcium, and ammonium salts of rGpC. The calculated results are generally consistent with the observed sites, except for cytosine N4, where a hydration site is predicted yet none observed in rGpC salts, and for guanine N3, which appears in this calculation to compete unfavorably with the adjacent donor site at guanine N2. There is, however, a significant probability of finding a one-water G-N3-W-G-N2 bridge indicated in the simulation. An explanation for the guanine N3 discrepancy in terms of electrostatic potentials is also offered. The calculated one- and two-water bridges in the rGpC hydration complex coincide in a number of cases to those observed in the ordered water structure of the sodium rGpC crystal hydrate.


Asunto(s)
Simulación por Computador , Fosfatos de Dinucleósidos , Método de Montecarlo , Investigación Operativa , Cristalografía , Modelos Estructurales , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA