Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37107384

RESUMEN

Interest in organic cows' milk has increased due to the perceived superior nutritional quality and improved sustainability and animal welfare. However, there is a lack of simultaneous assessments on the influence of organic dairy practices and dietary and breed drivers on productivity, feed efficiency, health parameters, and nutritional milk quality at the herd level. This work aimed to assess the impact of organic vs. conventional management and month on milk yield and basic composition, herd feed efficiency, health parameters, and milk fatty acid (FA) composition. Milk samples (n = 800) were collected monthly from the bulk tanks of 67 dairy farms (26 organic and 41 conventional) between January and December 2019. Data on breed and feeding practices were gathered via farm questionnaires. The samples were analyzed for their basic composition and FA profile using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC), respectively. The data were analyzed using a linear mixed model, repeated measures design and multivariate redundancy analysis (RDA). The conventional farms had higher yields (kg/cow per day) of milk (+7.3 kg), fat (+0.27 kg), and protein (+0.25 kg) and higher contents (g/kg milk) of protein, casein, lactose, and urea. The conventional farms produced more milk (+0.22 kg), fat (+8.6 g), and protein (+8.1 g) per kg offered dry matter (DM). The organic farms produced more milk per kg of offered non-grazing and concentrate DM offered, respectively (+0.5 kg and +1.23 kg), and fat (+20.1 g and +51 g) and protein (+17 g and +42 g). The organic milk had a higher concentration of saturated fatty acid (SFA; +14 g/kg total FA), polyunsaturated fatty acid (PUFA; +2.4 g/kg total FA), and nutritionally beneficial FA alpha linolenic acid (ALNA; +14 g/kg total FA), rumenic acid (RA; +14 g/kg total FA), and eicosapentaenoic acid (EPA; +14 g/kg total FA); the conventional milk had higher concentrations of monounsaturated FA (MUFA; +16 g/kg total FA). Although the conventional farms were more efficient in converting the overall diet into milk, fat, and protein, the organic farms showed better efficiency in converting conserved forages and concentrates into milk, fat, and protein as a result of reduced concentrate feeding. Considering the relatively small differences in the FA profiles between the systems, increased pasture intake can benefit farm sustainability without negatively impacting consumer nutrition and health.

2.
Food Chem ; 359: 129865, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940467

RESUMEN

To study the effects of dairy production system on milk macromineral and trace element concentrations, milk samples were collected monthly in 2019 from 43 conventional and 27 organic farms. Organic milk contained more Ca (1049.5 vs. 995.8 mg/kg), K (1383.6 vs. 1362.4 mg/kg), P (806.5 vs. 792.5 mg/kg) and Mo (73.3 vs. 60.6 µg/kg) but less Cu (52.4 vs. 60.6 µg/kg), Fe (0.66 vs 2.03 mg/kg), Mn (28.8 vs. 45.0 µg/kg), Zn (4.51 vs. 5.00 mg/kg) and Al (0.32 vs. 1.14 µg/kg) than conventional milk. Significant seasonal variation was observed in all determined minerals' concentrations. Milk I concentration was not consistently affected by production system, whereas organic milk contained less I in June and July than conventional milk. Dietary factors contributing to different milk mineral concentrations between production systems included intakes of maize silage, dry-straights and oils (higher in conventional diets), and pasture, clover and wholecrop (higher in organic diets).


Asunto(s)
Leche/química , Agricultura Orgánica , Oligoelementos/análisis , Animales , Calcio/análisis , Dieta/veterinaria , Femenino , Hierro/análisis , Potasio/análisis , Estaciones del Año , Ensilaje , Trifolium , Zea mays
3.
Foods ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829015

RESUMEN

Thirty conventional and twenty-four organic dairy farms were divided into equal numbers within system groups: high-pasture, standard-pasture, and low-pasture groups. Milk samples were collected monthly for 12 consecutive months. Milk from high-pasture organic farms contained less fat and protein than standard- and low-pasture organic farms, but more lactose than low-pasture organic farms. Grazing, concentrate feed intake and the contribution of non-Holstein breeds were the key drivers for these changes. Milk Ca and P concentrations were lower in standard-pasture conventional farms than the other conventional groups. Milk from low-pasture organic farms contained less Ca than high- and standard-pasture organic farms, while high-pasture organic farms produced milk with the highest Sn concentration. Differences in mineral concentrations were driven by the contribution of non-Holstein breeds, feeding practices, and grazing activity; but due to their relatively low numerical differences between groups, the subsequent impact on consumers' dietary mineral intakes would be minor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA