Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Syst Parasitol ; 99(3): 375-397, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35394638

RESUMEN

A new species of lepocreadiid, Opechonoides opisthoporus n. sp., is described infecting 12 pomacentrid fish species from the Great Barrier Reef, Australia, with Abudefduf whitleyi Allen & Robertson as the type-host. This taxon differs from the only other known member of the genus, Opechonoides gure Yamaguti, 1940, in the sucker width ratio, cirrus-sac length, position of the testes, position of the pore of Laurer's canal, and relative post-testicular distance. The new species exhibits stenoxenic host-specificity, infecting pomacentrids from seven genera: Abudefduf Forsskål, Amphiprion Bloch & Schneider, Neoglyphidodon Allen, Neopomacentrus Allen, Plectroglyphidodon Fowler & Ball, Pomacentrus Lacépède and Stegastes Jenyns. Phylogenetic analyses of 28S rDNA sequence data demonstrate that O. opisthoporus n. sp. forms a strongly supported clade with Prodistomum orientale (Layman, 1930) Bray & Gibson, 1990. The life cycle of this new species is partly elucidated on the basis of ITS2 rDNA sequence data; intermediate hosts are shown to be three species of Ctenophora. New host records and molecular data are reported for Lepocreadium oyabitcha Machida, 1984 and Lepotrema amblyglyphidodonis Bray, Cutmore & Cribb, 2018, and new molecular data are provided for Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018 and Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996. Novel cox1 mtDNA sequence data showed intraspecific geographical structuring between Heron Island and Lizard Island for L. acanthochromidis but not for L. adlardi or O. opisthoporus n. sp.


Asunto(s)
Gastrópodos , Perciformes , Trematodos , Infecciones por Trematodos , Animales , Australia , ADN Ribosómico/genética , Peces/genética , Estadios del Ciclo de Vida , Filogenia , Especificidad de la Especie , Trematodos/genética
2.
Glob Chang Biol ; 23(9): 3690-3703, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28390081

RESUMEN

Anthropogenic nutrient inputs enhance microbial respiration within many coastal ecosystems, driving concurrent hypoxia and acidification. During photosynthesis, Symbiodinium spp., the microalgal endosymbionts of cnidarians and other marine phyla, produce O2 and assimilate CO2 and thus potentially mitigate the exposure of the host to these stresses. However, such a role for Symbiodinium remains untested for noncalcifying cnidarians. We therefore contrasted the fitness of symbiotic and aposymbiotic polyps of a model host jellyfish (Cassiopea sp.) under reduced O2 (~2.09 mg/L) and pH (~ 7.63) scenarios in a full-factorial experiment. Host fitness was characterized as asexual reproduction and their ability to regulate internal pH and Symbiodinium performance characterized by maximum photochemical efficiency, chla content and cell density. Acidification alone resulted in 58% more asexual reproduction of symbiotic polyps than aposymbiotic polyps (and enhanced Symbiodinium cell density) suggesting Cassiopea sp. fitness was enhanced by CO2 -stimulated Symbiodinium photosynthetic activity. Indeed, greater CO2 drawdown (elevated pH) was observed within host tissues of symbiotic polyps under acidification regardless of O2 conditions. Hypoxia alone produced 22% fewer polyps than ambient conditions regardless of acidification and symbiont status, suggesting Symbiodinium photosynthetic activity did not mitigate its effects. Combined hypoxia and acidification, however, produced similar numbers of symbiotic polyps compared with aposymbiotic kept under ambient conditions, demonstrating that the presence of Symbiodinium was key for mitigating the combined effects of hypoxia and acidification on asexual reproduction. We hypothesize that this mitigation occurred because of reduced photorespiration under elevated CO2 conditions where increased net O2 production ameliorates oxygen debt. We show that Symbiodinium play an important role in facilitating enhanced fitness of Cassiopea sp. polyps, and perhaps also other noncalcifying cnidarian hosts, to the ubiquitous effects of ocean acidification. Importantly we highlight that symbiotic, noncalcifying cnidarians may be particularly advantaged in productive coastal waters that are subject to simultaneous hypoxia and acidification.


Asunto(s)
Cnidarios , Dinoflagelados , Hipoxia , Simbiosis , Animales , Concentración de Iones de Hidrógeno , Fotosíntesis
3.
Proc Biol Sci ; 283(1833)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358374

RESUMEN

Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries.


Asunto(s)
Peces/fisiología , Escifozoos/fisiología , Agua de Mar/química , Simbiosis , Animales , Dióxido de Carbono/química , Concentración de Iones de Hidrógeno , Océanos y Mares
4.
Proc Natl Acad Sci U S A ; 110(3): 1000-5, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277544

RESUMEN

A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.


Asunto(s)
Periodicidad , Escifozoos/crecimiento & desarrollo , Animales , Cambio Climático , Cnidarios/crecimiento & desarrollo , Ctenóforos/crecimiento & desarrollo , Bases de Datos Factuales , Fenómenos Ecológicos y Ambientales , Ecosistema , Humanos , Dinámica Poblacional , Factores de Tiempo , Urocordados/crecimiento & desarrollo , Zooplancton/crecimiento & desarrollo
5.
Ecol Appl ; 25(2): 573-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26263676

RESUMEN

The relationship between ecological impact and ecosystem structure is often strongly nonlinear, so that small increases in impact levels can cause a disproportionately large response in ecosystem structure. Nonlinear ecosystem responses can be difficult to predict because locally relevant data sets can be difficult or impossible to obtain. Bayesian networks (BN) are an emerging tool that can help managers to define ecosystem relationships using a range of data types from comprehensive quantitative data sets to expert opinion. We show how a simple BN can reveal nonlinear dynamics in seagrass ecosystems using ecological relationships sourced from the literature. We first developed a conceptual diagram by cataloguing the ecological responses of seagrasses to a range of drivers and impacts. We used the conceptual diagram to develop a BN populated with values sourced from published studies. We then applied the BN to show that the amount of initial seagrass biomass has a mitigating effect on the level of impact a meadow can withstand without loss, and that meadow recovery can often require disproportionately large improvements in impact levels. This mitigating effect resulted in the middle ranges of impact levels having a wide likelihood of seagrass presence, a situation known as bistability. Finally, we applied the model in a case study to identify the risk of loss and the likelihood of recovery for the conservation and management of seagrass meadows in Moreton Bay, Queensland, Australia. We used the model to predict the likelihood of bistability in 23 locations in the Bay. The model predicted bistability in seven locations, most of which have experienced seagrass loss at some stage in the past 25 years providing essential information for potential future restoration efforts. Our results demonstrate the capacity of simple, flexible modeling tools to facilitate collation and synthesis of disparate information. This approach can be adopted in the initial stages of conservation programs as a low-cost and relatively straightforward way to provide preliminary assessments of.nonlinear dynamics in ecosystems.


Asunto(s)
Ecosistema , Modelos Biológicos , Australia , Teorema de Bayes , Bahías , Biomasa , Conservación de los Recursos Naturales , Dinámicas no Lineales , Población , Zosteraceae/fisiología
6.
Glob Chang Biol ; 20(1): 28-37, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24323533

RESUMEN

Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species. Cubozoan jellyfish known to cause Irukandji syndrome have historically been confined to tropical waters but may be expanding into subtropical regions. Here, we examine the interactive effects of warming and acidification on the population dynamics of polyps of an Irukandji jellyfish, Alatina nr mordens, and the formation of statoliths in newly metamorphosed medusae, to determine if this jellyfish could tolerate future conditions predicted for southeast Queensland (SEQ), Australia. Two experiments, examining the orthogonal factors of temperature and pH, were undertaken. Experiment 1 mimicked the current, ca. 2050 and ca. 2100 summer temperature and pH conditions predicted for SEQ using A1F1 scenarios (temperature: 25, 27, 29 °C; pH: 7.9, 7.8, 7.6) and Experiment 2 mimicked current and future winter conditions (18 and 22 °C, pH 7.9, 7.8, 7.6). All polyps in Experiment 1 survived and budded. Fewer polyps budded in the lower pH treatments; however, patterns varied slightly among temperature treatments. Statoliths at pH 7.6 were 24% narrower than those at pH 7.8 and 7.9. Most polyps survived the winter conditions mimicked by Experiment 2 but only polyps in the 22 °C, pH 7.9 treatment increased significantly. The current absence of A. nr mordens medusae in SEQ, despite the polyps' ability to tolerate the current temperature and pH conditions, suggests that ecological, rather than abiotic factors currently limit their distribution. Observations that budding was lower under low pH treatments suggest that rates of asexual reproduction will likely be much slower in the future. We consider that A. nr mordens polyps are likely to tolerate future conditions but are unlikely to thrive in the long term. However, if polyps can overcome potential ecological boundaries and acidification proceeds slowly A. nr mordens could expand polewards in the short term.


Asunto(s)
Cambio Climático , Cubomedusas/fisiología , Animales , Concentración de Iones de Hidrógeno , Dinámica Poblacional , Queensland , Reproducción , Temperatura
7.
Glob Chang Biol ; 20(10): 3050-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24849111

RESUMEN

Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Animales , Antozoos , Australia , Ecosistema , Explotaciones Pesqueras , Peces , Inundaciones , Herbivoria , Calidad del Agua , Humedales
8.
Conserv Biol ; 28(4): 982-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24527964

RESUMEN

Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species-based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Animales , Peces/fisiología , Melanesia , Densidad de Población , Especificidad de la Especie
9.
Parasitol Int ; 101: 102890, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38522781

RESUMEN

We examined gelatinous zooplankton from off eastern Australia for lepocreadiid trematode metacercariae. From 221 specimens of 17 species of cnidarian medusae and 218 specimens of four species of ctenophores, infections were found in seven cnidarian and two ctenophore species. Metacercariae were distinguished using cox1 mtDNA, ITS2 rDNA and morphology. We identified three species of Prodistomum Linton, 1910 [P. keyam Bray & Cribb, 1996, P. orientale (Layman, 1930), and Prodistomum Type 3], two species of Opechona Looss, 1907 [O. kahawai Bray & Cribb, 2003 and O. cf. olssoni], and Cephalolepidapedon saba Yamaguti, 1970. Two species were found in cnidarians and ctenophores, three only in cnidarians, and one only in a ctenophore. Three Australian fishes were identified as definitive hosts; four species were collected from Scomber australasicus and one each from Arripis trutta and Monodactylus argenteus. Transmission of trematodes to these fishes by ingestion of gelatinous zooplankton is plausible given their mid-water feeding habits, although such predation is rarely reported. Combined morphological and molecular analyses of adult trematodes identified two cox1 types for C. saba, three cox1 types and species of Opechona, and six cox1 types and five species of Prodistomum of which only two are identified to species. All three genera are widely distributed geographically and have unresolved taxonomic issues. Levels of distinction between the recognised species varied dramatically for morphology, the three molecular markers, and host distribution. Phylogenetic analysis of 28S rDNA data extends previous findings that species of Opechona and Prodistomum do not form monophyletic clades.


Asunto(s)
Enfermedades de los Peces , Trematodos , Infecciones por Trematodos , Zooplancton , Animales , Trematodos/clasificación , Trematodos/genética , Trematodos/aislamiento & purificación , Trematodos/anatomía & histología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/epidemiología , Australia , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Japón , Cnidarios/clasificación , Peces/parasitología , Metacercarias/aislamiento & purificación , Filogenia , ADN Espaciador Ribosómico/análisis , ADN Mitocondrial/análisis , ADN de Helmintos/análisis , ADN Ribosómico/análisis , Pueblos del Este de Asia
10.
J Plankton Res ; 45(4): 677-692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483906

RESUMEN

Mesoscale oceanographic features influence the composition of zooplankton. Cyclonic eddies can promote upwelling and production of gelatinous zooplankton, which play critical roles in ocean biogeochemical cycling. We examined variation in assemblages of thaliaceans (salps, doliolids and pyrosomes) among mesoscale oceanographic features at the tropical-temperate boundary of the East Australian Current (EAC) in Spring 2019 and Autumn 2021. The influence of cyclonic eddies was examined in a large offshore cyclonic eddy in 2019 and a newly formed frontal eddy in 2021. Pyrosomes were most abundant in the offshore EAC jet, and salps and doliolids were most abundant in coastal features, including within eddies that were transported offshore. In 2019, Salpa fusiformis increased 4-fold over 8 days in the large cyclonic eddy, and in 2021, doliolids increased > 50-fold over 2 weeks in a chlorophyll-rich coastal eddy while abundances of other thaliaceans remained unchanged or decreased. Correlations between abundances of thaliaceans and chlorophyll-a concentrations across the 102 samples collected during both voyages revealed that doliolids occupy a wider range of chlorophyll-a concentrations than salps. Our observations indicate that doliolids thrive in productive shelf environments, salps occur in less productive shelf waters and pyrosomes are most abundant in oligotrophic waters of the south Coral Sea.

11.
Mar Environ Res ; 182: 105774, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36332420

RESUMEN

Studies of microplastics are increasing exponentially and standard protocols are only beginning to be established. Jellyfish are considered susceptible to ingesting microplastics because they feed on small, suspended particles. Inconsistent approaches used to study interactions between jellyfish and microplastics, however, make comparisons among studies difficult. Here we review aspects of the methods used to sample jellyfish in the field and experimental approaches used in the laboratory to study interactions between jellyfish and microplastics, recommend some standard protocols and identify areas for further research. We highlight the need for experiments to be environmentally relevant, to study a greater diversity of species and to study different life history stages.


Asunto(s)
Escifozoos , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
12.
Sci Total Environ ; 790: 148076, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34090170

RESUMEN

Microplastics are ubiquitous pollutants in aquatic environments globally. Wastewater treatment plants are considered to be a major source of microplastics and jellyfish have been proposed as potential bioindicators of microplastic pollution. We tested whether treated wastewater influenced the concentration and/or composition of microplastics in the receiving water by comparing the concentration and composition of microplastics in seawater collected in the wastewater plume and at sites distant from treated wastewater releases in the Gold Coast Broadwater, Australia, and at sites within the nearby Tweed River estuaries, which receives >10 times less wastewater discharge. In addition, tiger sea nettle Chrysaora cf. pentostoma medusae were collected to determine whether more microplastics occurred in the guts of the medusae nearby diffusers and whether the microplastics ingested by medusae were representative of those present in the water column. The concentration and composition of microplastics at the wastewater release sites did not significantly differ from sites that were distant from them. Eighty three percent of medusae contained microplastics in their guts and the composition of the ingested microplastics differed significantly from that in the surrounding water. We concluded that discharged treated wastewater had no detectable effect on levels or composition of microplastics in the receiving water and that C. pentostoma are unsuitable bioindicators because the microplastics they ingested did not represent those available in their environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Biomarcadores Ambientales , Monitoreo del Ambiente , Plásticos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
13.
Mar Pollut Bull ; 172: 112867, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34425362

RESUMEN

Concepts in microplastics studies are not well established due to the emerging nature of microplastic research, especially in jellyfish. We conducted experiments to test whether ephyrae would ingest more microbeads via trophic transfer than direct ingestion and whether medusae would ingest more aged microbeads than virgin microbeads. We exposed ephyrae of Aurelia coerulea to two treatments, aged microbeads and Artemia nauplii that had ingested microbeads. We found that the ephyrae ingested 35 times more microbeads via trophic transfer than by direct ingestion. In the second experiment, medusae of A. coerulea were exposed to virgin microbeads and microbeads in seawater under a 12/12 light/dark cycle or constant darkness. Ingestion rates of microbeads from the light incubation were greater than those from the dark incubation or virgin microbeads, suggesting the likely presence of photosynthetic organisms in biofilms from the light incubation increased the palatability of the microbeads and promoted their ingestion.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microesferas , Plásticos , Contaminantes Químicos del Agua/análisis
14.
Aquat Toxicol ; 236: 105866, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34052718

RESUMEN

Herbicides are among the most detected pesticides in coastal environments. Herbicides may impact non-target organisms, but invertebrates that have a symbiotic relationship with microalgae (zooxanthellae) may be particularly susceptible. How zooxanthellae influence the response of organisms to herbicides, however, remains untested. We exposed zooxanthellate and azooxanthellate Cassiopea xamachana medusae to environmentally relevant concentrations of the herbicide atrazine (0 µg L - 1, 7 µg L - 1 and 27 µg L - 1) for 20 days. We hypothesised that atrazine would have adverse effects on the size, rate of bell contractions and, respiration of medusae, but that effects would be more severe in zooxanthellate than azooxanthellate medusae. We also predicted that photosynthetic efficiency, chlorophyll a (Chla) content and zooxanthellae density would decrease in zooxanthellate medusae exposed to atrazine. Both zooxanthellate and azooxanthellate medusae shrank, yet the size-specific respiration rates were not constant during the experiment. Photosynthetic efficiency of zooxanthellate medusae significantly decreased at 7 and 27 µgL-1 atrazine, but atrazine did not affect the Chla content or zooxanthellae density. Our results showed that even though atrazine inhibited photosynthesis, zooxanthellae were not expelled from the host. We conclude that the presence of zooxanthellae did not increase the susceptibility of C. xamachana medusae to atrazine.


Asunto(s)
Herbicidas/toxicidad , Escifozoos/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Atrazina , Clorofila A , Microalgas , Fotosíntesis/efectos de los fármacos , Escifozoos/efectos de los fármacos , Simbiosis
15.
Mar Environ Res ; 168: 105306, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33839400

RESUMEN

Modifications to estuaries through the construction of barrages alter the natural dynamics of inhabitant species by controlling freshwater inputs into those systems. To understand the effects of modified freshwater flows on a native scyphozoan jellyfish, Catostylus mosaicus, and to identify the environmental drivers of medusa occurrence, we analysed a 20-year observational dataset composed of 11 environmental variables and medusa presence/absence from 15 sampling stations located below the Fitzroy Barrage, in the Fitzroy River, Queensland. Major decreases in salinity (minimum salinity 0) occurred approximately 16 times during the 20-year period and medusae disappeared from the estuary following every major freshwater flow event. Salinity was identified as the most influential variable contributing to variation in the number of upper estuary sites reporting jellyfish. We then ran two laboratory experiments to test the following hypotheses: (i) prolonged decreases in salinity impair survival, pulsation, and respiration rates of C. mosaicus medusae; and (ii) transient decreases temporarily impair pulsation and respiration but medusae recover when salinity returns to normal levels. Medusae were unable to survive extended periods at extreme low salinities, such that they would experience when a barrage opens fully, but had significantly higher survival and recovery rates following smaller, transient changes to salinity that might occur following a moderate rainfall event. This demonstrates for the first time that modification of freshwater flow by a barrage regulates the population dynamics of an estuarine jellyfish, and highlights the need for robust, long term datasets, and to firmly embed experimental approaches in realistic ecological contexts.


Asunto(s)
Estuarios , Salinidad , Animales , Agua Dulce , Dinámica Poblacional , Queensland
16.
Sci Total Environ ; 793: 148679, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328968

RESUMEN

Ocean acidification (OA) can alter the behaviour and physiology of marine fauna and impair their ability to interact with other species, including those in symbiotic and predatory relationships. Phyllosoma larvae of lobsters are symbionts to many invertebrates and often ride and feed on jellyfish, however OA may threaten interactions between phyllosomas and jellyfish. Here, we tested whether OA predicted for surface mid-shelf waters of Great Barrier Reef, Australia, under ∆ pH = -0.1 (pH ~7.9) and ∆pH = -0.3 (pH ~7.7) relative to the present pH (~8.0) (P) impaired the survival, moulting, respiration, and metabolite profiles of phyllosoma larvae of the slipper lobster Thenus australiensis, and the ability of phyllosomas to detect chemical cues of fresh jellyfish tissue. We discovered that OA was detrimental to survival of phyllosomas with only 20% survival under ∆pH = -0.3 compared to 49.2% and 45.3% in the P and ∆pH = -0.1 treatments, respectively. The numbers of phyllosomas that moulted in the P and ∆pH = -0.1 treatments were 40% and 34% higher, respectively, than those in the ∆pH = -0.3 treatment. Respiration rates varied between pH treatments, but were not consistent through time. Respiration rates in the ∆pH = -0.3 and ∆pH = -0.1 treatments were initially 40% and 22% higher, respectively, than in the P treatment on Day 2 and then rates varied to become 26% lower (∆pH = -0.3) and 17% (∆pH = -0.1) higher towards the end of the experiment. Larvae were attracted to jellyfish tissue in treatments P and ∆pH = -0.1 but avoided jellyfish at ∆pH = -0.3. Moreover, OA conditions under ∆pH = -0.1 and ∆pH = -0.3 levels reduced the relative abundances of 22 of the 34 metabolites detected in phyllosomas via Nuclear Magnetic Resonance (NMR) spectroscopy. Our study demonstrates that the physiology and ability to detect jellyfish tissue by phyllosomas of the lobster T. australiensis may be impaired under ∆pH = -0.3 relative to the present conditions, with potential negative consequences for adult populations of this commercially important species.


Asunto(s)
Nephropidae , Agua de Mar , Animales , Señales (Psicología) , Concentración de Iones de Hidrógeno , Larva , Océanos y Mares
17.
Environ Pollut ; 275: 116641, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33611208

RESUMEN

Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 µg/L) and chlorpyrifos (0.04 µg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.


Asunto(s)
Plaguicidas , Escifozoos , Contaminantes Químicos del Agua , Animales , Australia , Ecotoxicología , Metaboloma , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad
18.
Mar Pollut Bull ; 156: 111208, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32366368

RESUMEN

Jellyfish are voracious planktonic predators that may be susceptible to ingesting microplastics. We measured rates of ingestion and egestion of microbeads by Aurelia aurita (Scyphozoa) and evaluated whether ingesting microbeads affected metabolism or gut epithelia. Ingestion rates were measured by exposing medusae to microbeads and randomly sampling them 6 times over a 32 h period to determine the number of microbeads in their tissues. Egestion rates were measured by exposing medusae to microbeads for 1 h before transferring them to kreisels without microbeads and sampling them 6 times over 8 h. Respiration rates of medusae were determined using incubations and potential damage to gut epithelia was evaluated using histopathology. Medusae ingested few microbeads and egested them within 8 h. Microbeads had no effect on respiration and the histology. We concluded that the medusae may recognise microbeads as non-food particles and that their ingestion caused undetectable physiological and histological harm.


Asunto(s)
Plásticos , Escifozoos , Animales , Ingestión de Alimentos , Microesferas
19.
Mar Environ Res ; 162: 105175, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33070064

RESUMEN

Deoxygenation and acidification co-occur in many coastal ecosystems because nutrient enrichment produces excess organic matter that intensifies aerobic respiration during decomposition, thereby depleting O2, increasing CO2 and lowering pH. Despite this link between coastal deoxygenation (CD) and acidification (CA), and evidence that both stressors pose a risk to marine fauna, few studies have examined the effects of these drivers in combination on marine animals including invertebrates. Here, we studied the individual and combined effects of CD (~1.5 mg L-1 O2) and CA (~7.7 pH) on the survival, number of tentacles, settlement and movement behaviours of creeping polyps of the Irukandji jellyfish, Alatina alata. Low DO increased the survival rate (17% more) of the creeping polyps. 12% more creeping polyps settled in low pH than ambient pH and 16.7% more settled in low DO than ambient DO treatment. Exposure to CA and CD did not influence the number of tentacles, mobility or movement velocity of the creeping polyps, but after 4 h exposure to the treatments, they moved approximately half as fast. Our results indicate that CD can enhance survival and settlement success, but CA does not intensify these outcomes on A. alata creeping polyps.


Asunto(s)
Cnidarios , Cubomedusas , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Escifozoos
20.
Environ Toxicol Chem ; 39(9): 1685-1692, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32418248

RESUMEN

Pesticides are a major contaminant in coastal waters and can cause adverse effects in marine invertebrates such as jellyfish. Most studies have investigated short-term responses of organisms to unrealistically high concentrations of pesticides; however, chronic exposure to persistent low concentrations, which are more likely to occur in the environment, are rarely analyzed. We tested the response of polyps of the moon jellyfish Aurelia aurita to environmental concentrations of the herbicide atrazine and the insecticide chlorpyrifos, individually and in combination, over 9 wk. We hypothesized that exposure to individual pesticides would reduce rates of asexual reproduction and alter polyps' metabolite profiles, and that the results would be more severe when polyps were exposed to the combined pesticides. Polyps survived and reproduced (through budding) in all treatments, and no differences among treatments were observed. Proton nuclear magnetic resonance spectroscopy revealed no difference in profiles of polar metabolites of polyps exposed to the individual or combined pesticides. Our results suggest that A. aurita polyps are unaffected by chronic exposure to atrazine and chlorpyrifos at concentrations recommended as being protective by current Australian water quality guidelines. Environ Toxicol Chem 2020;39:1685-1692. © 2020 SETAC.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Plaguicidas/toxicidad , Escifozoos/fisiología , Animales , Organismos Acuáticos/efectos de los fármacos , Atrazina/toxicidad , Cloropirifos/toxicidad , Herbicidas/toxicidad , Modelos Lineales , Metabolómica , Análisis de Componente Principal , Espectroscopía de Protones por Resonancia Magnética , Reproducción Asexuada/efectos de los fármacos , Escifozoos/efectos de los fármacos , Análisis de Supervivencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA