Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Surg Res ; 267: 660-668, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273796

RESUMEN

BACKGROUND: Myelomeningocele (MMC) is the congenital failure of neural tube closure in utero, for which the standard of care is prenatal surgical repair. We developed clinical-grade placental mesenchymal stromal cells seeded on a dural extracellular matrix (PMSC-ECM), which have been shown to improve motor outcomes in preclinical ovine models. To evaluate the long-term safety of this product prior to use in a clinical trial, we conducted safety testing in a murine model. METHODS: Clinical grade PMSCs obtained from donor human placentas were seeded onto a 6 mm diameter ECM at a density of 3 × 105 cells/cm2. Immunodeficient mice were randomized to receive either an ECM only or PMSC-ECM administered into a subcutaneous pocket. Mice were monitored for tumor formation until two study endpoints: 4 wk and 6 mo. Pathology and histology on all tissues was performed to evaluate for tumors. Quantitative polymerase chain reaction (qPCR) was performed to evaluate for the presence of human DNA, which would indicate persistence of PMSCs. RESULTS: Fifty-four mice were included; 13 received ECM only and 14 received PMSC-ECM in both the 4-wk and 6-mo groups. No mice had gross or microscopic evidence of tumor development. A nodular focus of mature fibrous connective tissue was identified at the subcutaneous implantation pocket in the majority of mice with no significant difference between ECM only and PMSC-ECM groups (P = 0.32 at 4 wk, P > 0.99 at 6 mo). Additionally, no human DNA was detected by qPCR in any mice at either time point. CONCLUSIONS: Subcutaneous implantation of the PMSC-ECM product did not result in tumor formation and we found no evidence that PMSCs persisted. These results support the safety of the PMSC-ECM product for use in a Phase 1/2a human clinical trial evaluating fetal MMC repair augmented with PMSC-ECM.


Asunto(s)
Meningomielocele , Células Madre Mesenquimatosas , Animales , Matriz Extracelular/patología , Femenino , Feto/cirugía , Meningomielocele/cirugía , Ratones , Placenta , Embarazo
2.
Fetal Diagn Ther ; 48(6): 472-478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111873

RESUMEN

BACKGROUND: The inherent morbidity associated with fetal ovine models of myelomeningocele (MMC) has created challenges for long-term survival of lambs. We aimed to develop a fetal ovine surgical spinal exposure model which could be used to evaluate long-term safety after direct spinal cord application of novel therapeutics for augmentation of in utero MMC repair. METHODS: At gestational age (GA) 100-106, fetal lambs underwent surgical intervention. Laminectomy of L5-L6 was performed, dura was removed, and an experimental product was directly applied to the spinal cord. Paraspinal muscles and skin were closed and the fetus was returned to the uterus. Lambs were delivered via cesarean section at GA 140-142. Lambs were survived for 3 months with regular evaluation of motor function by the sheep locomotor rating scale. Spinal angulation was evaluated by magnetic resonance imaging at 2 weeks and 3 months. RESULTS: Five fetal surgical intervention lambs and 6 control lambs who did not undergo surgical intervention were included. All lambs survived to the study endpoint of 3 months. No lambs had motor function abnormalities or increased spinal angulation. CONCLUSION: This model allows for long-term survival after fetal spinal cord exposure with product application directly onto the spinal cord.


Asunto(s)
Cesárea , Meningomielocele , Animales , Modelos Animales de Enfermedad , Femenino , Feto , Meningomielocele/diagnóstico por imagen , Meningomielocele/cirugía , Embarazo , Ovinos , Médula Espinal/diagnóstico por imagen
3.
Fetal Diagn Ther ; 47(6): 507-513, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32097922

RESUMEN

INTRODUCTION: The ovine model is the gold standard large animal model of myelomeningocele (MMC); however, it has a high rate of fetal loss. We reviewed our experience with the model to determine risk factors for fetal loss. METHODS: We performed a retrospective review from 2009 to 2018 to identify operative factors associated with fetal loss (early fetal demise, abortion, or stillbirth). Operative risk factors included gestational age at operation, operative time, reduction of multiple gestations, amount of replaced amniotic fluid, ambient temperature, and method of delivery. RESULTS: MMC defects were created in 232 lambs with an overall survival rate of 43%. Of the 128 fetuses that died, 53 (42%) had demise prior to repair, 61 (48%) aborted, and 14 (11%) were stillborn. Selective reduction of multiple gestations in the same uterine horn was associated with increased fetal demise (OR 3.03 [95% CI 1.29-7.05], p = 0.01). Later gestational age at MMC repair and Cesarean delivery were associated with decreased abortion/stillbirth (OR 0.90 [95% CI 0.83-0.90], p = 0.03, and OR 0.37 [95% CI 0.16-0.31], p = 0.02), respectively. CONCLUSION: Avoiding selective reduction, repairing MMC later in gestation, and performing Cesarean delivery decreases the rate of fetal loss in the ovine MMC model.


Asunto(s)
Modelos Animales de Enfermedad , Muerte Fetal/etiología , Meningomielocele/embriología , Meningomielocele/cirugía , Ovinos , Aborto Espontáneo/epidemiología , Animales , Cesárea , Femenino , Muerte Fetal/prevención & control , Edad Gestacional , Meningomielocele/mortalidad , Embarazo , Estudios Retrospectivos , Factores de Riesgo , Mortinato/epidemiología
4.
Fetal Diagn Ther ; 47(12): 912-917, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166951

RESUMEN

BACKGROUND: Fetal repair of myelomeningocele (MMC) with placental mesenchymal stromal cells (PMSCs) rescues ambulation in the ovine model up to 48 h postnatally. Outcomes past 48 h are unknown as MMC lambs have not been survived past this timepoint. OBJECTIVE: We aimed to survive lambs for 6 months following the fetal repair of MMC with PMSCs. METHODS: Fetal MMC lambs were repaired with PMSCs. Lambs received either no additional treatment or postnatal bracing and physical therapy (B/PT). Motor function was assessed with the sheep locomotor rating (SLR). Lambs with an SLR of 15 at birth were survived for 6 months or until a decline in SLR less than 15, whichever came first. All lambs underwent a perimortem MRI. RESULTS: The lambs with no postnatal treatment (n = 2) had SLR declines to 7 and 13 at 29 and 65 days, respectively, and were euthanized. These lambs had a spinal angulation of 57° and 47°, respectively. The B/PT lamb (n = 1) survived for 6 months with a sustained SLR of 15 and a lumbar angulation of 42°. CONCLUSION: Postnatal physical therapy and bracing counteracted the inherent morbidity of the absent paraspinal muscles in the ovine MMC model allowing for survival and maintenance of rescued motor function of the prenatally treated lamb up to 6 months.


Asunto(s)
Meningomielocele , Células Madre Mesenquimatosas , Animales , Femenino , Feto , Meningomielocele/cirugía , Proyectos Piloto , Placenta/diagnóstico por imagen , Embarazo , Ovinos
5.
Fetal Diagn Ther ; 46(6): 376-384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30970373

RESUMEN

INTRODUCTION: The surgically induced fetal lamb model is the most commonly used large animal model of myelomeningocele (MMC) but is subject to variation due to surgical technique during defect creation. MATERIAL AND METHODS: Thirty-one fetal lambs underwent creation of the MMC defect, followed by defect repair with either an extracellular matrix (ECM) patch (n = 10) or ECM seeded with placental mesenchymal stromal cells (n = 21). Postnatal hindlimb function was assessed using the Sheep Locomotor Rating (SLR) scale. Postmortem magnetic resonance imaging of the lumbar spine was used to measure the level and degree of spinal angulation, as well as cross-sectional area of remaining vertebral bone. RESULTS: Median level of angulation was between the 2nd and 3rd lumbar vertebrae, with a median angle of 24.3 degrees (interquartile range 16.2-35.3). There was a negative correlation between angulation degree and SLR (r = -0.44, p = 0.013). Degree of angulation also negatively correlated with the normalized cross-sectional area of remaining vertebral bone (r = -0.75, p < 0.0001). DISCUSSION: Surgical creation of fetal MMC leads to varying severity of spinal angulation in the ovine model, which affects postnatal functional outcomes. Postnatal assessment of spinal angulation aids in standardization of the surgical model of fetal MMC repair.


Asunto(s)
Miembro Posterior/inervación , Vértebras Lumbares/cirugía , Meningomielocele/cirugía , Trasplante de Células Madre Mesenquimatosas , Animales , Modelos Animales de Enfermedad , Femenino , Edad Gestacional , Humanos , Locomoción , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/fisiopatología , Imagen por Resonancia Magnética , Meningomielocele/diagnóstico por imagen , Meningomielocele/etiología , Meningomielocele/fisiopatología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Placenta/citología , Valor Predictivo de las Pruebas , Embarazo , Diagnóstico Prenatal , Oveja Doméstica
6.
Fetal Diagn Ther ; 39(3): 179-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26159889

RESUMEN

INTRODUCTION: Fetal amniotic membranes (FM) have been shown to preserve spinal cord histology in the fetal sheep model of myelomeningocele (MMC). This study compares the effectiveness of placenta-derived mesenchymal stromal cells (PMSCs) from early-gestation versus term-gestation placenta to augment FM repair to improve distal motor function in a sheep model. METHODS: Fetal lambs (n = 4) underwent surgical MMC creation followed by repair with FM patch with term-gestation PMSCs (n = 1), FM with early-gestation PMSCs (n = 1), FM only (n = 1), and skin closure only (n = 1). Histopathology and motor assessment was performed. RESULTS: Histopathologic analysis demonstrated increased preservation of spinal cord architecture and large neurons in the lamb repaired with early-gestation cells compared to all others. Lambs repaired with skin closure only, FM alone, and term-gestation PMSCs exhibited extremely limited distal motor function; the lamb repaired with early-gestation PMSCs was capable of normal ambulation. DISCUSSION: This pilot study is the first in vivo comparison of different gestational-age placenta-derived stromal cells for repair in the fetal sheep MMC model. The preservation of large neurons and markedly improved motor function in the lamb repaired with early-gestation cells suggest that early-gestation placental stromal cells may exhibit unique properties that augment in utero MMC repair to improve paralysis.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Feto/cirugía , Meningomielocele/cirugía , Placenta/citología , Ovinos , Animales , Modelos Animales de Enfermedad , Femenino , Feto/patología , Edad Gestacional , Meningomielocele/patología , Actividad Motora , Embarazo , Regeneración , Células del Estroma/trasplante , Factores de Tiempo , Resultado del Tratamiento
7.
Mol Ther Methods Clin Dev ; 32(2): 101263, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38827250

RESUMEN

Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells.

8.
Med Res Rev ; 33(5): 911-33, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22886693

RESUMEN

Microvascular barrier dysfunction is a serious problem that occurs in many inflammatory conditions, including sepsis, trauma, ischemia-reperfusion injury, cardiovascular disease, and diabetes. Barrier dysfunction permits extravasation of serum components into the surrounding tissue, leading to edema formation and organ failure. The basis for microvascular barrier dysfunction is hyperpermeability at endothelial cell-cell junctions. Endothelial hyperpermeability is increased by actomyosin contractile activity in response to phosphorylation of myosin light chain by myosin light chain kinase (MLCK). MLCK-dependent endothelial hyperpermeability occurs in response to inflammatory mediators (e.g., activated neutrophils, thrombin, histamine, tumor necrosis factor alpha, etc.), through multiple cell signaling pathways and signaling molecules (e.g., Ca(++) , protein kinase C, Src kinase, nitric oxide synthase, etc.). Other signaling molecules protect against MLCK-dependent hyperpermeability (e.g., sphingosine-1-phosphate or cAMP). In addition, individual MLCK isoforms play specific roles in endothelial barrier dysfunction, suggesting that isoform-specific inhibitors could be useful for treating inflammatory disorders and preventing multiple organ failure. Because endothelial barrier dysfunction depends upon signaling through MLCK in many instances, MLCK-dependent signaling comprises multiple potential therapeutic targets for preventing edema formation and multiple organ failure. The following review is a discussion of MLCK-dependent mechanisms and cell signaling events that mediate endothelial hyperpermeability.


Asunto(s)
Endotelio/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Transducción de Señal , Animales , Endotelio/efectos de los fármacos , Endotelio/fisiopatología , Humanos , Terapia Molecular Dirigida , Quinasa de Cadena Ligera de Miosina/química , Permeabilidad/efectos de los fármacos , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos
9.
Biomed Opt Express ; 14(11): 6031-6047, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021126

RESUMEN

Noninvasive transabdominal fetal pulse oximetry can provide clinicians critical assessment of fetal health and potentially contribute to improved management of childbirth. Conventional pulse oximetry through continuous wave (CW) light has challenges measuring the signals from deep tissue and separating the weak fetal signal from the strong maternal signal. Here, we propose a new approach for transabdominal fetal pulse oximetry through interferometric near-infrared spectroscopy (iNIRS). This approach provides pathlengths of photons traversing the tissue, which facilitates the extraction of fetal signals by rejecting the very strong maternal signal from superficial layers. We use a multimode fiber combined with a mode-field converter at the detection arm to boost the signal of iNIRS. Together, we can detect signals from deep tissue (>∼1.6 cm in sheep abdomen and in human forearm) at merely 1.1 cm distance from the source. Using a pregnant sheep model, we experimentally measured and extracted the fetal heartbeat signals originating from deep tissue. This validated a key step towards transabdominal fetal pulse oximetry through iNIRS and set a foundation for further development of this method to measure the fetal oxygen saturation.

10.
Bioact Mater ; 20: 179-193, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35663336

RESUMEN

Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration. However, current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration, thus leading to adverse tissue formation and decreased regenerative efficiency. Here, we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration. The biomaterial works by presenting two synthetic ligands, LLP2A and LXW7, explicitly targeting integrins α4ß1 and αvß3, respectively, expressed on the surfaces of the cells related to bone formation and vascularization, such as mesenchymal stem cells (MSCs), osteoblasts, endothelial progenitor cells (EPCs), and endothelial cells (ECs). In vitro, the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs, osteoblasts, EPCs, and ECs via integrin α4ß1 and αvß3, respectively. In an adult rat calvarial bone defect model, the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials, such as DLX5+ cells, osteocalcin+ cells, CD34+/CD45- cells and CD31+ cells. In a fetal sheep spinal bone defect model, the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects. This innovative biomaterial offers an off-the-shelf, easy-to-use, and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments.

11.
Bioact Mater ; 28: 467-479, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37408799

RESUMEN

Implantable vascular devices are widely used in clinical treatments for various vascular diseases. However, current approved clinical implantable vascular devices generally have high failure rates primarily due to their surface lacking inherent functional endothelium. Here, inspired by the pathological mechanisms of vascular device failure and physiological functions of native endothelium, we developed a new generation of bioactive parylene (poly(p-xylylene))-based conformal coating to address these challenges of the vascular devices. This coating used a polyethylene glycol (PEG) linker to introduce an endothelial progenitor cell (EPC) specific binding ligand LXW7 (cGRGDdvc) onto the vascular devices for preventing platelet adhesion and selectively capturing endogenous EPCs. Also, we confirmed the long-term stability and function of this coating in human serum. Using two vascular disease-related large animal models, a porcine carotid artery interposition model and a porcine carotid artery-jugular vein arteriovenous graft model, we demonstrated that this coating enabled rapid generation of self-renewable "living" endothelium on the blood contacting surface of the expanded polytetrafluoroethylene (ePTFE) grafts after implantation. We expect this easy-to-apply conformal coating will present a promising avenue to engineer surface properties of "off-the-shelf" implantable vascular devices for long-lasting performance in the clinical settings.

12.
J Pediatr Surg ; 58(5): 964-970, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36797111

RESUMEN

INTRODUCTION: Congenital diaphragmatic hernia (CDH) repair is an area of active research. Large defects requiring patches have a hernia recurrence rate of up to 50%. We designed a biodegradable polyurethane (PU)-based elastic patch that matches the mechanical properties of native diaphragm muscle. We compared the PU patch to a non-biodegradable Gore-Tex™ (polytetrafluoroethylene) patch. METHODS: The biodegradable polyurethane was synthesized from polycaprolactone, hexadiisocyanate and putrescine, and then processed into fibrous PU patches by electrospinning. Rats underwent 4 mm diaphragmatic hernia (DH) creation via laparotomy followed by immediate repair with Gore-Tex™ (n = 6) or PU (n = 6) patches. Six rats underwent sham laparotomy without DH creation/repair. Diaphragm function was evaluated by fluoroscopy at 1 and 4 weeks. At 4 weeks, animals underwent gross inspection for recurrence and histologic evaluation for inflammatory reaction to the patch materials. RESULTS: There were no hernia recurrences in either cohort. Gore-Tex™ had limited diaphragm rise compared to sham at 4 weeks (1.3 mm vs 2.9 mm, p = 0.003), but no difference was found between PU and sham (1.7 mm vs 2.9 mm, p = 0.09). There were no differences between PU and Gore-Tex™ at any time point. Both patches formed an inflammatory capsule, with similar thicknesses between cohorts on the abdominal (Gore-Tex™ 0.07 mm vs. PU 0.13 mm, p = 0.39) and thoracic (Gore-Tex™ 0.3 mm vs. PU 0.6 mm, p = 0.09) sides. CONCLUSION: The biodegradable PU patch allowed for similar diaphragmatic excursion compared to control animals. There were similar inflammatory responses to both patches. Further work is needed to evaluate long-term functional outcomes and further optimize the properties of the novel PU patch in vitro and in vivo. LEVEL OF EVIDENCE: Level II, Prospective Comparative Study.


Asunto(s)
Hernias Diafragmáticas Congénitas , Ratas , Animales , Hernias Diafragmáticas Congénitas/cirugía , Proyectos Piloto , Poliuretanos , Estudios Prospectivos , Diafragma/cirugía , Estudios Retrospectivos
13.
J Pediatr Surg ; 57(4): 753-758, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34217509

RESUMEN

BACKGROUND: While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS: Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS: Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS: Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.


Asunto(s)
Meningomielocele , Células Madre Mesenquimatosas , Animales , Femenino , Feto/cirugía , Edad Gestacional , Humanos , Meningomielocele/cirugía , Placenta , Embarazo , Ovinos
14.
J Pediatr Surg ; 57(1): 18-25, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34657738

RESUMEN

PURPOSE: Augmentation of in utero myelomeningocele repair with human placental mesenchymal stromal cells seeded onto extracellular matrix (PMSC-ECM) improves motor outcomes in an ovine myelomeningocele model. This study evaluated the safety of PMSC-ECM application directly onto the fetal spinal cord in preparation for a clinical trial. METHODS: Laminectomy of L5-L6 with PMSC-ECM placement directly onto the spinal cord was performed in five fetal lambs at gestational age (GA) 100-106 days. Lambs and ewes were monitored for three months following delivery. Lambs underwent magnetic resonance imaging (MRI) of the brain and spine at birth and at three months. All organs from lambs and uteri from ewes underwent histologic evaluation. Lamb spinal cords and brains and ewe placentas were evaluated for persistence of PMSCs by polymerase chain reaction for presence of human DNA. RESULTS: MRIs demonstrated no evidence of abnormal tissue growth or spinal cord tethering. Histological analysis demonstrated no evidence of abnormal tissue growth or treatment related adverse effects. No human DNA was identified in evaluated tissues. CONCLUSION: There was no evidence of abnormal tissue growth or PMSC persistence at three months following in utero application of PMSC-ECM to the spinal cord. This supports proceeding with clinical trials of PMSC-ECM for in utero myelomeningocele repair. LEVEL OF EVIDENCE: N/A TYPE OF STUDY: Basic science.


Asunto(s)
Meningomielocele , Células Madre Mesenquimatosas , Animales , Femenino , Humanos , Meningomielocele/cirugía , Placenta , Embarazo , Ovinos , Oveja Doméstica , Útero
15.
J Pediatr Surg ; 57(5): 941-948, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35093254

RESUMEN

INTRODUCTION: Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder. We hypothesized that fetal MMC repair with PMSC-ECM would also improve bowel and bladder function. METHODS: MMC defects were surgically created in twelve ovine fetuses at median gestational age (GA) 73 days, followed by defect repair at GA101 with PMSC-ECM. Fetuses were delivered at GA141. Primary bladder function outcomes were voiding posture and void volumes. Primary bowel function outcome was anorectal manometry findings including resting anal pressure and presence of rectoanal inhibitory reflex (RAIR). Secondary outcomes were anorectal and bladder detrusor muscle thickness. PMSC-ECM lambs were compared to normal lambs (n = 3). RESULTS: Eighty percent of PMSC-ECM lambs displayed normal voiding posture compared to 100% of normal lambs (p = 1). Void volumes were similar (PMSC-ECM 6.1 ml/kg vs. normal 8.8 ml/kg, p = 0.4). Resting mean anal pressures were similar between cohorts (27.0 mmHg PMSC-ECM vs. normal 23.5 mmHg, p = 0.57). RAIR was present in 3/5 PMSC-ECM lambs that underwent anorectal manometry and all normal lambs (p = 0.46). Thicknesses of anal sphincter complex, rectal wall muscles, and bladder detrusor muscles were similar between cohorts. CONCLUSION: Ovine fetal MMC repair augmented with PMSC-ECM results in near-normal bowel and bladder function. Further work is needed to evaluate these outcomes in human patients.


Asunto(s)
Meningomielocele , Células Madre Mesenquimatosas , Animales , Femenino , Feto/cirugía , Humanos , Meningomielocele/complicaciones , Meningomielocele/cirugía , Placenta , Embarazo , Ovinos , Oveja Doméstica , Vejiga Urinaria/cirugía
16.
Biomed Res Int ; 2021: 2180883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34423032

RESUMEN

INTRODUCTION: Translational models of myelomeningocele (MMC) are needed to test novel in utero interventions. An ideal animal model for MMC has locomotor function at birth and is low cost enough to allow for high throughput. The rat MMC model is limited by immature locomotor function at birth. The ovine MMC model is a costly surgical model. Guinea pigs are uniquely suited for an MMC model being a small animal model with locomotor function at birth. We aimed to develop a retinoic acid (RA) model of MMC in the guinea pig and to evaluate if pregnant guinea pigs could tolerate uterine manipulation. METHODS: Time-mated Dunkin Hartley guinea pig dams were dosed with 60 mg/kg of RA between gestation age (GA) 12 and 15 days in the development of an RA model. Fetuses were grossly evaluated for MMC lesions at Cesarean section after GA 31 days. Evaluation of the ability of pregnant guinea pig dams to tolerate uterine surgical intervention was performed by hysterotomy of a separated group of time-mated guinea pigs at GA 45, 50, and 55. RESULTS: Forty-two pregnant guinea pigs were dosed with RA, with a total of 189 fetuses. The fetal demise rate was 38% (n = 71). A total of 118 fetuses were viable, 83% (n = 98) were normal fetuses, 8% (n = 10) had a neural tube defect, and 8% (n = 10) had a hematoma or other anomalies. No fetuses developed an MMC defect. None of the fetuses that underwent hysterotomy survived to term. CONCLUSION: RA dosed at 60 mg/kg in guinea pigs between GA 12 and 15 did not result in MMC. Dunkin Hartley guinea pigs did not tolerate a hysterotomy near term in our surgical model. Further work is needed to determine if MMC can be induced in guinea pigs with alternate RA dosing.


Asunto(s)
Enfermedades Fetales/patología , Histerotomía/efectos adversos , Meningomielocele/patología , Tretinoina/toxicidad , Animales , Cesárea/efectos adversos , Modelos Animales de Enfermedad , Femenino , Enfermedades Fetales/inducido químicamente , Edad Gestacional , Cobayas , Humanos , Meningomielocele/inducido químicamente , Embarazo
17.
Sci Rep ; 11(1): 1398, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446868

RESUMEN

Hirschsprung disease (HD) is a congenital disorder in the distal colon that is characterized by the absence of nerve ganglion cells in the diseased tissue. The primary treatment for HD is surgical intervention with resection of the aganglionic bowel. The accurate identification of the aganglionic segment depends on the histologic evaluation of multiple biopsies to determine the absence of ganglion cells in the tissue, which can be a time-consuming procedure. We investigate the feasibility of using a combination of label-free optical modalities, second harmonic generation (SHG); two-photon excitation autofluorescence (2PAF); and Raman spectroscopy (RS), to accurately locate and identify ganglion cells in murine intestinal tissue without the use of exogenous labels or dyes. We show that the image contrast provided by SHG and 2PAF signals allows for the visualization of the overall tissue morphology and localization of regions that may contain ganglion cells, while RS provides detailed multiplexed molecular information that can be used to accurately identify specific ganglion cells. Support vector machine, principal component analysis and linear discriminant analysis classification models were applied to the hyperspectral Raman data and showed that ganglion cells can be identified with a classification accuracy higher than 95%. Our findings suggest that a near real-time intraoperative histology method can be developed using these three optical modalities together that can aid pathologists and surgeons in rapid, accurate identification of ganglion cells to guide surgical decisions with minimal human intervention.


Asunto(s)
Colon/diagnóstico por imagen , Colon/inervación , Enfermedad de Hirschsprung/diagnóstico por imagen , Microscopía , Animales , Ratones
18.
IEEE Trans Biomed Eng ; 68(1): 256-266, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32746021

RESUMEN

OBJECTIVE: Current intrapartum fetal monitoring technology is unable to provide physicians with an objective metric of fetal well-being, leading to degraded patient outcomes and increased litigation costs. Fetal oxygen saturation (SpO2) is a more suitable measure of fetal distress, but the inaccessibility of the fetus prior to birth makes this impossible to capture through current means. In this paper, we present a fully non-invasive, transabdominal fetal oximetry (TFO) system that provides in utero measures of fetal SpO2. METHODS: TFO is performed by placing a reflectance-mode optode on the maternal abdomen and sending photons into the body to investigate the underlying fetal tissue. The proposed TFO system design consists of a multi-detector optode, an embedded optode control system, and custom user-interface software. To evaluate the developed TFO system, we utilized an in utero hypoxic fetal lamb model and performed controlled desaturation experiments while capturing gold standard arterial blood gases (SaO2). RESULTS: Various degrees of fetal hypoxia were induced with true SaO2 values ranging between 10.5% and 66%. The non-invasive TFO system was able to accurately measure these fetal SpO2 values, supported by a root mean-squared error of 6.37% and strong measures of agreement with the gold standard. CONCLUSION: The results support the efficacy of the presented TFO system to non-invasively measure a wide-range of fetal SpO2 values and identify critical levels of fetal hypoxia. SIGNIFICANCE: TFO has the potential to improve fetal outcomes by providing obstetricians with a non-invasive measure of fetal oxygen saturation prior to delivery.


Asunto(s)
Oximetría , Oxígeno , Animales , Feto , Humanos , Hipoxia , Monitoreo Fisiológico , Ovinos
19.
Lab Anim ; 55(2): 170-176, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33108940

RESUMEN

Q fever is a worldwide zoonosis caused by Coxiella burnetii that can lead to abortion, endocarditis, and death in humans. Researchers utilizing parturient domestic ruminants, including sheep, have an increased risk of occupational exposure. This study evaluated the effectiveness of our screening protocol in eliminating C. burnetii-positive sheep from our facility. From August 2010 to May 2018, all ewes (N = 306) and select lambs (N = 272; ovis aries) were screened twice for C. burnetii utilizing a serum Phase I and Phase II antibody immunofluorescence assay (IFA). The first screen was performed by the vendor prior to breeding, and the second screen was performed on arrival to the research facility. Ewes that were positive on arrival screening were quarantined and retested using repeat IFA serology, enzyme-linked immunosorbent assay, buffy coat polymerase chain reaction (PCR), and amniotic fluid PCR. The overall individual seroprevalence of C. burnetii in the flocks tested by the vendor was 14.2%. Ewes with negative Phase I and Phase II IFA results were selected for transport to the research facility. Upon arrival to the facility, two (0.7%) ewes had positive Phase I IFA results. Repeat testing demonstrated seropositivity in one of these two ewes, though amniotic fluid PCR was negative in both. The repeat seropositive ewe was euthanized prior to use in a research protocol. No Q fever was reported among husbandry, laboratory or veterinary staff during the study period. Serologic testing for C. burnetii with IFA prior to transport and following arrival to a research facility limits potential exposure to research staff.


Asunto(s)
Monitoreo Epidemiológico/veterinaria , Tamizaje Masivo/veterinaria , Enfermedades Profesionales/prevención & control , Fiebre Q/prevención & control , Enfermedades de las Ovejas/epidemiología , Animales , California/epidemiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Técnica del Anticuerpo Fluorescente/veterinaria , Humanos , Tamizaje Masivo/estadística & datos numéricos , Reacción en Cadena de la Polimerasa/veterinaria , Vigilancia de la Población/métodos , Prevalencia , Medición de Riesgo/métodos , Estudios Seroepidemiológicos , Ovinos , Oveja Doméstica
20.
Reprod Sci ; 27(10): 1960-1966, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32542541

RESUMEN

Current intrapartum fetal oxygen saturation (SaO2) monitoring methodologies are limited, mostly consisting of fetal heart rate monitoring which is a poor predictor of fetal hypoxia. A newly developed transabdominal fetal oximeter (TFO) may be able to determine fetal SaO2 non-invasively. This study is to validate a novel TFO in determining fetal SaO2 in a hypoxic fetal lamb model. Fetal hypoxia was induced in at-term pregnant ewe by placing an aortic occlusion balloon infrarenally and inflating it in a stepwise fashion to decrease blood flow to the uterine artery. The inflation was held at each step for 10 min, and fetal arterial blood gases (ABGs) were intermittently recorded from the fetal carotid artery. The balloon catheter was deflated when fetal SaO2 fell below 15%, and the fetus was recovered. A total of three desaturation experiments were performed. The average fetal SpO2 reported by the TFO was derived at each hypoxic level and correlated with the ABG measures. Fetal SaO2 from the ABGs ranged from 10.5 to 66%. The TFO SpO2 correlated with the ABG fetal SaO2 (r-squared = 0.856) with no significant differences (p > 0.5). The fetal SpO2 measurements from TFO were significantly different than the maternal SpO2 (p < 0.01), which suggests that the transcutaneous measurements are penetrating through the maternal abdomen sufficiently and are expressing the underlying fetal tissue physiology. The recently developed TFO system was able to non-invasively report the fetal SpO2, which showed strong correlation with ABG measures and showed no significant differences.


Asunto(s)
Hipoxia Fetal/fisiopatología , Oximetría/métodos , Animales , Análisis de los Gases de la Sangre , Modelos Animales de Enfermedad , Femenino , Embarazo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA