Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Infect Dis ; 225(5): 768-776, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850051

RESUMEN

BACKGROUND: We determined the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in air and on surfaces in rooms of patients hospitalized with coronavirus disease 2019 (COVID-19) and investigated patient characteristics associated with SARS-CoV-2 environmental contamination. METHODS: Nasopharyngeal swabs, surface, and air samples were collected from the rooms of 78 inpatients with COVID-19 at 6 acute care hospitals in Toronto from March to May 2020. Samples were tested for SARS-CoV-2 ribonucleic acid (RNA), cultured to determine potential infectivity, and whole viral genomes were sequenced. Association between patient factors and detection of SARS-CoV-2 RNA in surface samples were investigated. RESULTS: Severe acute respiratory syndrome coronavirus 2 RNA was detected from surfaces (125 of 474 samples; 42 of 78 patients) and air (3 of 146 samples; 3 of 45 patients); 17% (6 of 36) of surface samples from 3 patients yielded viable virus. Viral sequences from nasopharyngeal and surface samples clustered by patient. Multivariable analysis indicated hypoxia at admission, polymerase chain reaction-positive nasopharyngeal swab (cycle threshold of ≤30) on or after surface sampling date, higher Charlson comorbidity score, and shorter time from onset of illness to sampling date were significantly associated with detection of SARS-CoV-2 RNA in surface samples. CONCLUSIONS: The infrequent recovery of infectious SARS-CoV-2 virus from the environment suggests that the risk to healthcare workers from air and near-patient surfaces in acute care hospital wards is likely limited.


Asunto(s)
COVID-19 , Nasofaringe/virología , Aerosoles y Gotitas Respiratorias , SARS-CoV-2/aislamiento & purificación , Adulto , Anciano , Microbiología del Aire , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19 , Canadá/epidemiología , Exposición a Riesgos Ambientales , Personal de Salud , Humanos , Pacientes Internos , Persona de Mediana Edad , Pandemias/prevención & control , SARS-CoV-2/genética
2.
Am J Respir Crit Care Med ; 203(9): 1112-1118, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534659

RESUMEN

Rationale: Patients with severe coronavirus disease (COVID-19) require supplemental oxygen and ventilatory support. It is unclear whether some respiratory support devices may increase the dispersion of infectious bioaerosols and thereby place healthcare workers at increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Objectives: To quantitatively compare viral dispersion from invasive and noninvasive respiratory support modalities.Methods: This study used a simulated ICU room with a breathing-patient simulator exhaling nebulized bacteriophages from the lower respiratory tract with various respiratory support modalities: invasive ventilation (through an endotracheal tube with an inflated cuff connected to a mechanical ventilator), helmet ventilation with a positive end-expiratory pressure (PEEP) valve, noninvasive bilevel positive-pressure ventilation, nonrebreather face masks, high-flow nasal oxygen (HFNO), and nasal prongs.Measurements and Main Results: Invasive ventilation and helmet ventilation with a PEEP valve were associated with the lowest bacteriophage concentrations in the air, and HFNO and nasal prongs were associated with the highest concentrations. At the intubating position, bacteriophage concentrations associated with HFNO (2.66 × 104 plaque-forming units [PFU]/L of air sampled), nasal prongs (1.60 × 104 PFU/L of air sampled), nonrebreather face masks (7.87 × 102 PFU/L of air sampled), and bilevel positive airway pressure (1.91 × 102 PFU/L of air sampled) were significantly higher than those associated with invasive ventilation (P < 0.05 for each). The difference between bacteriophage concentrations associated with helmet ventilation with a PEEP valve (4.29 × 10-1 PFU/L of air sampled) and bacteriophage concentrations associated with invasive ventilation was not statistically significant.Conclusions: These findings highlight the potential differential risk of dispersing virus among respiratory support devices and the importance of appropriate infection prevention and control practices and personal protective equipment for healthcare workers when caring for patients with transmissible respiratory viral infections such as SARS-CoV-2.


Asunto(s)
Cuidados Críticos/métodos , ADN Viral/análisis , Transmisión de Enfermedad Infecciosa/prevención & control , Insuficiencia Respiratoria/terapia , Ventiladores Mecánicos/efectos adversos , Virosis/virología , Virus/genética , Humanos , Virosis/prevención & control , Virosis/transmisión
3.
Nano Lett ; 21(12): 5209-5216, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34110166

RESUMEN

The ability to rapidly diagnose, track, and disseminate information for SARS-CoV-2 is critical to minimize its spread. Here, we engineered a portable smartphone-based quantum barcode serological assay device for real-time surveillance of patients infected with SARS-CoV-2. Our device achieved a clinical sensitivity of 90% and specificity of 100% for SARS-CoV-2, as compared to 34% and 100%, respectively, for lateral flow assays in a head-to-head comparison. The lateral flow assay misdiagnosed ∼2 out of 3 SARS-CoV-2 positive patients. Our quantum dot barcode device has ∼3 times greater clinical sensitivity because it is ∼140 times more analytically sensitive than lateral flow assays. Our device can diagnose SARS-CoV-2 at different sampling dates and infectious severity. We developed a databasing app to provide instantaneous results to inform patients, physicians, and public health agencies. This assay and device enable real-time surveillance of SARS-CoV-2 seroprevalence and potential immunity.


Asunto(s)
COVID-19 , Puntos Cuánticos , Humanos , Inmunoensayo , SARS-CoV-2 , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Teléfono Inteligente
4.
Air Med J ; 41(1): 109-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35248328

RESUMEN

OBJECTIVE: It is unclear whether supplemental oxygen and noninvasive ventilation respiratory support devices increase the dispersion of potentially infectious bioaerosols in a pressurized air medical cabin. This study quantitatively compared particle dispersion from respiratory support modalities in an air medical cabin during flight. METHODS: Dispersion was measured in a fixed wing air ambulance during flight with a breathing medical mannequin simulator exhaling nebulized saline from the lower respiratory tract with the following respiratory support modalities: a nasal cannula with a surgical mask, high-flow nasal oxygen (HFNO) with a surgical mask, and noninvasive bilevel positive airway pressure (BiPAP) ventilation. RESULTS: Nasal cannula oxygen with a surgical mask was associated with the highest particle concentrations. In the absence of mask seal leaks, BiPAP was associated with 1 order of magnitude lower particle concentration compared with a nasal cannula with a surgical mask. Particle concentrations associated with HFNO with a surgical mask were lower than a nasal cannula with a surgical mask but higher than BiPAP. CONCLUSIONS: Particle dispersion associated with the use of BiPAP and HFNO with a surgical mask is lower than nasal cannula oxygen with a surgical mask. These findings may assist air medical organizations with operational decisions where little data exist about respiratory particle dispersion.


Asunto(s)
Servicios Médicos de Urgencia , Ventilación no Invasiva , Aeronaves , Humanos , Oxígeno , Terapia por Inhalación de Oxígeno , Sistema Respiratorio
5.
Nat Commun ; 12(1): 1806, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753733

RESUMEN

Better diagnostic tools are needed to combat the ongoing COVID-19 pandemic. Here, to meet this urgent demand, we report a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This serological assay, called SATiN, is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in the liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that SATiN has a similar sensitivity to ELISA, and its readouts are consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics, as well as disease and vaccination management.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba de COVID-19/métodos , COVID-19/diagnóstico , Inmunoensayo/métodos , Luciferasas/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
Infect Control Hosp Epidemiol ; 42(8): 1001-1003, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33203496

RESUMEN

To compare sensitivity of specimens for COVID-19 diagnosis, we tested 151 nasopharyngeal/midturbinate swab pairs from 117 COVID-19 inpatients using reverse-transcriptase polymerase chain reaction (RT-PCR). Sensitivity was 94% for nasopharyngeal and 75% for midturbinate swabs (P = .0001). In 88 nasopharyngeal/midturbinate pairs with matched saliva, sensitivity was 86% for nasopharyngeal swabs and 88% for combined midturbinate swabs/saliva.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , Nasofaringe , Saliva , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA